Responsive image
博碩士論文 etd-0902109-111931 詳細資訊
Title page for etd-0902109-111931
論文名稱
Title
砷化銦鎵假晶式高電子遷移率電晶體之小訊號及非線性 模型之建立
The Small Signal and Nonlinear Models of InGaAs pseudomorphic High Electron Mobility Transistors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-14
繳交日期
Date of Submission
2009-09-02
關鍵字
Keywords
小訊號模型、非線性模型、假晶式高電子遷移率電晶體
pseudomorphic high electron mobility transistors, Nonlinear models, Small signal model
統計
Statistics
本論文已被瀏覽 5632 次,被下載 0
The thesis/dissertation has been browsed 5632 times, has been downloaded 0 times.
中文摘要
近年來無線通訊產業的快速發展,連帶著射頻電路技術也發展得如火如荼。而電晶體是構成主動電路的靈魂之一,尤其對於功率放大器而言需要承受高電流及高電壓,更是需要特性優異的電晶體才能提供良好的電路特性。
本論文是將穩懋公司所提供的砷化銦鎵製程的假晶式高電子遷移率電晶體進行模型化。一開始先經由其小訊號等效模型來建立其外質及內質各部份的參數。當中外質各元件可由一簡單的萃取方法來獲得,而毋須再透過冗長的時間去作擬合的過程。而經由簡單的矩陣轉換方式便能快速地獲得電晶體的內質部分。並且透過同樣的萃取方式建立不同閘極寬度面積的電晶體模型,進而去分析其模型內各項參數對於面積的變化情形。
最後,將前面章節所建立的小訊號模型的觀念進一步去拓展到非線性模型的領域。由於電晶體模型中一些內質元件會隨著不同偏壓點而有相當顯著的變化,因而原本的小訊號等效電路模型將無法完全應用在非線性的電路上。透過建立其內質元件的非線性方程式來描述其非線性特性,進而發展出非線性的電晶體等效模型。並且驗證其模型與直流、小訊號、大訊號功率量測結果之準確性。
Abstract
Recent advances in wireless communication industry, radio- frequency circuits are developing fast. For power amplifiers, the active circuits are mainly composed of transistors where withstand high voltage and current. The excellent transistors characteristic result in good circuit performances.
In the thesis, the modeling of InGaAs pseudomorphic high electron mobility transistor was provided by Win Semiconductor Corporation. The established small signal model contains extrinsic and intrinsic elements. The extrinsic elements are extracted by simple method without fitting process for long time. Then, the intrinsic elements are obtained by conventional matrix transformations. The each element of models is varied with different gate width area are also discussed.
Finally, the nonlinear models are expanded upon the concept of small signal model. Due to some of intrinsic elements are significantly varied with bias, small signal models have not applied to nonlinear circuit simulations. For developing nonlinear models, the nonlinear elements characteristics are described by empirical fitting equations. The accuracy of models is achieved by comparing simulated and on wafer measurement results, including DC、small signal and large signal power characteristics.
目次 Table of Contents
目錄I
圖目錄III
表目錄VI
第一章 序論 1
1.1 研究動機1
1.2 研究方法2
1.3 論文架構3
第二章 量測平台及參數之介紹4
2.1 簡介4
2.2 半導體參數分析儀之介紹4
2.3 網路分析儀之介紹5
2.4 頻譜分析儀之介紹6
2.5 負載拉移量測系統之介紹7
2.6 微波參數之介紹8
2.6.1 散射參數8
2.6.2 功率增益9
2.6.3 功率附加效率13
2.6.4 增益壓縮點14
2.6.5 線性度15
第三章 假晶式高電子遷移率電晶體之小訊號模型 17
3.1簡介17
3.2小訊號模型之介紹17
3.3元件特性19
3.4萃取外質寄生元件參數步驟22
3.5萃取內質元件參數步驟28
3.6小訊號模型模擬結果與量測結果之比較30
3.7小訊號模型之誤差分析41
3.8小訊號模型參數與元件尺寸大小之關係43
第四章 假晶式高電子遷移率電晶體之非線性模型建立46
4.1簡介46
4.2非線性模型之介紹46
4.3非線性模型之萃取流程50
4.3.1 電流-電壓方程式50
4.3.2 電容方程式53
4.4 非線性模型與量測之驗證結果57
4.4.1 小訊號散射參數之驗證結果57
4.4.2 大訊號之驗證結果 61
4.4.3 負載拉移之驗證結果65
第五章 結論 68
參考文獻69
參考文獻 References
參考文獻
[1]K. Ki Young, K. Ji Hoon, P. Sung Min, and P. Chul Soon, "Parasitic Capacitance Optimization of GaAs HBT Class E Power Amplifier for High Efficiency CDMA EER Transmitter," in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2007, pp. 733-736.
[2]D. Y. C. Lie, J. D. Popp, J. F. Rowland, A. H. Yang, W. Feipeng, and D. Kimball, "Highly Efficient and Linear Class E SiGe Power Amplifier Design," in Solid-State and Integrated Circuit Technology(ICSICT '06.) 8th Int' l Conf., Oct. 2006, pp. 1526-1529.
[3]R. Brama, L. Larcher, A. Mazzanti, and F. Svelto, "A 30.5 dBm 48% PAE CMOS Class-E PA With Integrated Balun for RF Applications," IEEE J. Solid-State Circuits, vol. 43, pp. 1755-1762, Aug. 2008.
[4]許仲延, "半導體元件模型化流程介紹," EEsof Taiwan Agilent Technologies.
[5]G. Gonzalez, Microwave Transistor Amplifiers Analysis and Design, 2nd ed., Prentice Hall, 1997.
[6]D. M.Pozar, Microwave Engineering, 3rd ed., New York: Wiley, 2005.
[7]K. Shirakawa, H. Oikawa, T. Shimura, T. Kawasaki, Y. Ohashi, T. Saito, and Y. Daido, "An approach to determining an equivalent circuit for HEMTs," IEEE Trans. Microwave Theory and Techniques, vol. 43, pp. 499-503, Mar. 1995.
[8]G. Kompa and M. Novotny, "Highly consistent FET model parameter extraction based on broadband S-parameter measurements," in Microwave Symp. Dig., IEEE MTT-S Int' l, Jun. 1992, pp. 293-296 vol.1.
[9]L. Fujiang and G. Kompa, "FET model parameter extraction based on optimization with multiplane data-fitting and bidirectional search-a new concept," IEEE Trans. Microwave Theory and Techniques, vol. 42, pp. 1114-1121, Jul. 1994.
[10]G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, "A new method for determining the FET small-signal equivalent circuit," IEEE Trans. Microwave Theory and Techniques, vol. 36, pp. 1151-1159, Jul. 1988.
[11]R. Tayrani, J. E. Gerber, T. Daniel, R. S. Pengelly, and U. L. Rohde, "A new and reliable direct parasitic extraction method for MESFETs and HEMTs," in European Microwave Conf., 23rd,Oct. 1993, pp. 451-453.
[12]N. Rorsman, M. Garcia, C. Karlsson, and H. Zirath, "Accurate small-signal modeling of HFET's for millimeter-wave applications," IEEE Trans. Microwave Theory and Techniques, vol.44, pp.432-437, Mar. 1996.
[13]M. Tayel and A. Elgendy, "Extraction of HEMT Intrinsic elements from S-parameter measured values," AIML 06 Int' l Conf., pp. 95-100, 13 - 15 June, Sharm El Sheikh, Egypt, Jun. 2006.
[14]B. Luo, Y. X. Guo, S. Y. Wong, and L. C. Ong, "Modeling of 0.15 um InGaAs pHEMT up to 60 GHz,"in Radio-Frequency Integration Technology (RFIT 007), IEEE Int' l Workshop on, Dec. 2007, pp. 286-289.
[15]A. Caddemi, G. Crupi, and N. Donato, "A robust and fast procedure for the determination of the small signal equivalent circuit of HEMTs," Microelectronics Journal, vol. 35, pp. 431-436, May. 2004.
[16]M. Jeon, B.Kim, Y. Jeon, and Y. Jeong, "A Technique for Extracting Small-Signal Equivalent-Circuit Elements of HEMTs," IEICE Trans. electronics, vol. E82-C, Nov. 1999.
[17]F. Ali and A. Gupta, HEMTs and HBTs: Devices. Fabrication and Circuis, Artech House, 1991.
[18]I. A. Glover, S. R. Pennock, and P. R. Shepherd, Microwave Devices, Circuits And Subsystems for Communications Engineering, John Wiley & Son, Ltd, 2005.
[19]R. Anholt and S. Swirhun, "Equivalent-circuit parameter extraction for cold GaAs MESFET's," IEEE Trans. Microwave Theory and Techniques, vol. 39, pp. 1243-1247, Jul. 1991.
[20]M. Berroth and R. Bosch, "Broad-band determination of the FET small-signal equivalent circuit," IEEE Trans. Microwave Theory and Techniques, vol. 38, pp. 891-895, Jul. 1990.
[21]W. R. Curtice and M. Ettenberg, "A Nonlinear GaAs FET Model for Use in the Design of Output Circuits for Power Amplifiers," in Microwave Symp. Dig., MTT-S Int' l, 1985, pp. 405-408.
[22]H. Statz, P. Newman, I. W. Smith, R. A. Pucel, and H. A. Haus, "GaAs FET device and circuit simulation in SPICE," IEEE Trans. Electron Devices, vol. 34, pp. 160-169, Feb. 1987.
[23]I. Angelov, H. Zirath, and N. Rosman, "A new empirical nonlinear model for HEMT and MESFET devices," IEEE Trans. Microwave Theory and Techniques, vol. 40, pp. 2258-2266, Dec. 1992.
[24]I. Angelov, L. Bengtsson, and M. Garcia, "Extensions of the Chalmers nonlinear HEMT and MESFET model," IEEE Trans. Microwave Theory and Techniques, vol. 44, pp. 1664-1674, Oct. 1996.
[25]I. Angelov, N. Rorsman, J. Stenarson, M. Garcia, and H. Zirath, "An empirical table-based FET model," IEEE Trans. Microwave Theory and Techniques, vol. 47, pp. 2350-2357, Dec. 1999.
[26]I. Angelov and H. Zirath, "A New empirical nonlinear model for HEMT devices," Electronics Letters, vol. 28, pp. 140-142, Dec.1992.
[27]J. R. Loo-Yau, J. A. Reynoso-Hernadez, J. E. Zuniga, F. I. Hirata-Flores, and H. Ascencio-Ramirez, "Modeling the I-V characteristics of the power microwave FETs with the Angelov model using pulse measurements," Microwave and optical technology letters, vol.48, Nov. 2006, pp. 1046-1050.
[28]M.C. Currás-Francos, "Comparison of HEMT non-linear model extraction approaches based on small signal and on large signal measurements," John Wiley & Sons, Ltd., vol. 16, pp. 41-51, Jan. 2003.
[29]D. Schreurs, E. P. Vandamme, and S. Vandenberghe, "Capabilities of Vectorial Large-Signal Measurements to Validate RF Large-Signal Device Models," in ARFTG Conf. Dig., Fall, 58th, Nov. 2001, pp. 1-6.
[30]D. Schreurs, E. Vandamme, S. Vandenberghe, G. Carchon, and B. Nauwelaers, "Verification of Non-Linear MOSFET Models by Intermodulation Measurements Under Loadpull Conditions," in ARFTG Conf. Dig., Spring, 55th, Jun. 2000, pp. 1-5.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.114.94
論文開放下載的時間是 校外不公開

Your IP address is 3.138.114.94
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code