Responsive image
博碩士論文 etd-0902109-112238 詳細資訊
Title page for etd-0902109-112238
論文名稱
Title
三種叫姑魚(石首魚科)雌雄發聲肌蛋白質體差異之研究
Sexual differences in proteomics of the sonic muscles in three Johnius (Sciaenidae) species.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
52
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-08-28
繳交日期
Date of Submission
2009-09-02
關鍵字
Keywords
鱗鰭叫姑魚、頓頭叫姑魚、發聲肌、親缘關係、蛋白質體、道氏叫姑魚
Johnius distinctus, Johnius dussumieri, sonic muscle, Johnius amblycephalus, phylogeny, proteomics
統計
Statistics
本論文已被瀏覽 5760 次,被下載 43
The thesis/dissertation has been browsed 5760 times, has been downloaded 43 times.
中文摘要
叫姑魚屬(Johnius) 隸屬於石首魚科(Sciaenidaae),在台灣水域共有五種,分別為頓頭叫姑魚(Johnius amblycephalus)、皮氏叫姑魚(Johnius belengerii)、大鼻孔叫姑魚(Johnius macrohynus)、道氏叫姑魚(Johnius dussumieri)和鱗鰭叫姑魚(Johnius distinctus)。石首魚能發出鳴音主要是經由發音肌的快速收縮及放鬆以震動泳鰾而產生。其中皮氏叫姑魚與大鼻孔叫姑魚僅雄魚有發音肌其它三種則雌雄個體均具有此肌肉。以雌雄都具有發音肌之道氏叫姑魚、鳞鰭叫姑魚及頓頭叫姑魚進行研究,利用組織學與蛋白體學的特徵比較雌雄叫姑魚之發音肌差異。另外利用CO1基因之分子演化探討其親緣關係,以了解發音肌在雌雄間存缺在此屬內之演變情形。發音肌重量及長寬厚度指數皆為雄魚大於雌魚。雌雄發音肌共分辨出17個蛋白質點,被鑑定為以下蛋白質種類: 5種結構性蛋白(Actin alpha skeletal muscle, Tropomyosin-1, Myosin light chain 2, Myosin light chain 3, Myosin light polypeptide 4)、10種能量代謝性蛋白(Parvalbumin, ATP synthase subunit beta, GTP cyclohydrolase, creatine kinase isoform α, Muscle-type creatine kinase, Putative pterin-4-alpha-carbinolamine dehydratase, Beta-1,4-galactosyltransferase, Protein-glutamine gamma-glutamyltransferase 4, Triosephosphate isomerase, creatine kinase1)及1種壓力蛋白(Heat shock protein 70)。其中加以討論蛋白質表現量有性別差異之可能原因。在親源關係上皮氏叫姑魚與大鼻孔叫姑魚之親緣關係較近,而道氏、鳞鰭及頓頭叫姑魚為較原始的種類且並未成一單系群,此屬之祖先是否兩性均具有發音肌尚無法確定。
Abstract
Johnius specis (Sciaenidae) in Taiwanese waters include five species, Johnius amblycephalus, Johnius belengerii, Johnius macrohynus, Johnius dussumieri and Johnius distinctus. They are soniferous fishes. Contraction and relaxation of the sonic muscles cause the swim bladder to pulsate thus generating and amplifying the sounds. Among these species, only males of J. belengerii and J. macrohynus possess sonic muscle, whereas both sexes of the other three species possess sonic muscles. Proteomic characteristics in the male and female sonic muscles are studied in order to observe if obvious dimorphism exists. CO1-gene sequences were used to reconstruct the phylogenetic tree for these five species. The evolutionary pathway of this tree should suggest the evolutionary change of the sexual dimorphism in the sonic system. Various indices relating to muscle size were higher in male. 17 protein spots were shown in the 2D page for male and female sonic muscles, including 5 structural proteins (Actin alpha skeletal muscle, Tropomyosin-1, Myosin light chain 2, Myosin light chain 3, Myosin light polypeptide 4) and 10 metabolic proteins (Parvalbumin, ATP synthase subunit beta, GTP cyclohydrolase, creatine kinase isoform α, Muscle-type creatine kinase, Putative pterin-4-alpha-carbinolamine dehydratase, Beta-1,4-galactosyltransferase, Protein-glutamine gamma-glutamyltransferase 4, Triosephosphate isomerase, creatine kinase1 ) and stress protein(Heat shock protein 70) . Differences in expression between the sexes were discussed. The resulted phylogenetic trees show that J. belengerii and J. macrohynus are more closely related than to the other three species, which are more basal and members not belong to a specific clade. Whether the common ancestor of Johnius possessed the sonic muscles remains unclear.
目次 Table of Contents
謝詞 i

中文摘要------------------------------------------------------------------------------------- ii
英文摘要------------------------------------------------------------------------------------- iii
目錄------------------------------------------------------------------------------------------ v

表目錄---------------------------------------------------------------------------------------- vii

圖目錄---------------------------------------------------------------------------------------- viii
前言------------------------------------------------------------------------------------------- 1
發音肌------------------------------------------------------------------------------------------ 1
蛋白質體學------------------------------------------------------------------------------------- 3
親缘關係--------------------------------------------------------------------------------------- 4
研究目的--------------------------------------------------------------------------------------- 5
實驗材料與方法---------------------------------------------------------------------------- 6
實驗材料--------------------------------------------------------------------------------------- 6
台灣常見叫姑魚屬之親缘關係分析------------------------------------------------------------ 6
發音肌外部型態及組織學分析----------------------------------------------------------------- 8
蛋白質體分析---------------------------------------------------------------------------------- 10
統計分析--------------------------------------------------------------------------------------- 13
結果------------------------------------------------------------------------------------------- 14
雌雄發音肌觀察-------------------------------------------------------------------------------- 14
雌雄發音肌肌纖維面積的差異----------------------------------------------------------------- 14
發音肌蛋白的差異----------------------------------------------------------------------------- 15
親缘關係之研究-------------------------------------------------------------------------------- 16
討論------------------------------------------------------------------------------------------- 17
參考文獻------------------------------------------------------------------------------------- 21
表---------------------------------------------------------------------------------------------- 26
圖---------------------------------------------------------------------------------------------- 30
個人履歷------------------------------------------------------------------------------------- 39
參考文獻 References
沈世傑 (主編)。1994。臺灣魚類誌。台灣大學動物學系印行,台北。377-378頁。

伍漢霖,邵廣昭,賴春福 (編)。1999。拉漢世界魚類名典。水產出版社,基隆。1028頁。

林淵智。2008。大鼻孔叫姑魚生物音學特性及發音肌蛋白質體學研究。國立台灣海洋大學環境生物與漁業科學學系博士論文。125頁。

蔡凱恩。2009。台灣西岸十一種發聲魚類聲音特徵之研究。國立中山大學海洋生物研究所碩士論文。68頁。

Aebersold, R. and D.R. Goodlett. 2001. Mass spectrometry in proteomics. Chemical Reviews 101: 269–296.

Arellano-Martinez M, Ceballos-Vazquez BP, Garcia-Dominguez F. 1999.
Reproductive biology of the king angelfish Holacanthus passer Valenciennes
1846 in the Gulf of California, Mexico. Bulletin of Marine Science 3: 677-685


Au, W. W. L. and K. Bank. 1998. The acoustics of the snapping shrimp Synalpheus parneomeris in Kaneohe Bay. The Journal of the Acoustical Society of America 103: 41-47.

Chen, S. F and B. Q. Huang. 2000. Cytochemical profiles and quantitative analysis of fiber types in trunk muscle of Tigerperch, Terapon jarbua. Zoological Studies 39: 28-37.

Chen, S. F., B. Q. Huang and Y. Y. Chien. 1998. Histochemical characteristics of sonic muscle fibers in tigerperch, Terapon jarbua. Zoological Studies 37: 56-62

Chu, C. C., S. F. Chen and B. Q. Huang. 1997. The functional morphology of fiber types in the thornfish, Terapon jarbua sonic muscle. Journal of the Fisheries Society of Taiwan 24: 21-31.
Collier J. T. , T. Kaneko, T. Hirano, E. G. Grau. 2003. Seasonal changes in
reproductive activity in the Potter’s angelfish(Centropyge potteri)in Kaneohe
Bay, Hawaii. Environmental biology of fishes 68: 49-57.

Connaughton, M. A.. 2004. Sound generation in the searobin (Prionotus carolinus), a fish with alternate sonic muscle contraction. The journal of Experimental Biology 207: 1643-1654.

Connaughton, M. A. and M. H. Taylor. 1995. Effect of exogenous testosterone on sonic muscles mass in the weakfish, Cynoscion regalis. General and Comparative Endocrinology 100: 238-245.

Connaughton, M. A. and M. H. Taylor. 1996. Drumming, courtship and spawning behavior in captive weakfish, Cynoscion regalis. Copeia 1:195-199.

Connaughton, M. A., M. L. Fine and M. H. Taylor. 2000. Effects of fish size and temperature on weakfish disturbance calls: implications ofr the mechanism of sound generation.. The Journal of Experimental Biology 203: 1503-1512.

Dubowitz, V. 1985. Muscle Biopsy: A Practical Approach, 2nd ed. PP. 41-81. Bailliére Tindall.

Demski, L. S., Gerald, J. W. and A. N. Popper. 1973. Central and peripheral mechanisms of teleost sound production. American Zoologist 13: 1141–1167.

Fawcett, D. W. and J. P. Revel. 1961. The sarcoplasmic reticulum of a fast-acting fish muscle. The Journal of Biophysical and Biochemical Cytology 10: 89-109.

Fine, M.L. 1997. Endocrinology of sound production in fishes. Marine and Freshwater Behaviour and Physiology 29:23-45.

Fine, M. L., N. M. Burns and T. M. Harris. 1990. Ontogeny and sexual dimorphism of sonic muscle in the oyster toadfish. Canadian Journal of Zoology 68: 1374-1381.

Gold, J. R.. 1996. Drumming, courtship, and spawning behavior in captive weakfish, Cynoscion regalis. The American Society of Ichthyologists and Herpetologists pp. 195-199.

Hawkins,A.D., and K. J. Rasmussen.1978. The calls of gadoid fish. Journal of the Marine Biological Association of the United Kingdom 58:891-911.

Hill, G. L., M. L. Fine and J. A. Musick. 1987. Ontogeny of the sexually dimorphic sonic muscle in three sciaenid species. Copeia 3:708-713.

Kaatz, I.M. 2002. Multiple sound-producing mechanisms in teleost fishes and hypotheses regarding their behavioural significance. Bioacoustics 12:230-233.

Kim, N. K., J. H. Joh, H. R. Park, O. H. Kim, B. Y. Park and C. S. Lee. 2004. Differential expression profiling of proteomes and their mRNAs in porcine white and red skeletal muscles. Proteomics 4: 3422-3428.

Korneliussen, H., H. A. Dahl and J. D. Paulsen. 1978. Histochemical definition of muscle fibre types in the trunk musculature of a teleost fish (cod, Gadus morhua, L.). Histochemistry 55: 1-16.

Ladich, F.. 1997. Agonistic behaviour and significance of sounds in vocalizing fish. Marine and Freshwater Behaviour and Physiology 29:87-108.

Lobel, P. S.. 1992. Sounds produced by spawning fishes. Environmental Biology of Fishes 33: 351-358.

Loesser, K. E., J. Rafi and M. L. Fine 1997. Embryonic, juvenile,and adult development of the toadfish sonic muscle. Articles from resource 249: 469-477.

Meyer, A. 1993. Evolution of mitochondrial DNA in fisnes. pp 1-38 in I. W. Hochachka and T. P. Mommsen, eds. Molecular Biology Frontiers, Biochemistry and Moleaular Biology of Fishes. Vol. 2. Wlsevier science Publishers. Amsterdam.

Odense, P. H., C. M. Morrison and P. Rombough. (1978). The morphology and lactate dehydrogenase patterns of the sound muscle of the haddock (Melanogrammus aeglefinnus). Canadian Journal of Zoology 56: 1312-1326.

Oster, G. and J. S. Jaffe. 1980. Low frequency sounds from sustained contraction of human skeletal muscle. Biophysical Journal 30: 119-127.

Parmentier, E., V. Gennotte, B. Focant, G. Goffinet and P. Vandewalle. 2003. Characterization of the primary sonic muscles in Carapus acus (Carapidae): multidisciplinary approach. The Royal Society of New Zealand 270: 2301-2308.

Ueng, J. P., B. Q, Huang, and H. K. Mok. 2007.Sexual differences in the spawning sound of Japanese croaker, Argyrosomus japonicus (Sciaenidae). Canadian Journal of Zoology 46:233-244.

Salem, M.,P. B. Kenney, C. E. Rexroad and J. Yao. 2006. Molecular characterization of muscle atrophy and proteolysis associated with spawning in rainbow trout. Comparative Biochemistry and Physiology 1: 227-237.

Sasaki, K. 1989. Phylogeny of the family Sciaenidae, wuth notes on its zoogeography ( Teleostei, Perciformes ). Memoirs of the Faculty of Fisheries, Hokkaido University 6( 1/2 ): 1-137.

Schneider, H. 1967. Morphology and physiology of sound-producing mechanisms in teleost fishes. Marine Bio-acoustics, Vol. 2. W. N. Tavolga, eds., Pergamon Press, New York.

Schiavone, R., L. Zilli, C. Storelli and S. Vilella. 2008. IdentiWcation by proteome analysis of muscle proteins in sea bream (Sparus aurata). European Food Research and Technology 227:1403-1410

Sprague, M. W., 2000. The single sonic muscle twitch model for the sound-production mechanism in the weakfish, Cynoscion regalis. The Journal of the Acoustical Society of America 108: 2430-2437.

Tavolga, W. N., 1971. Acoustic orientation in the sea catfish, Galeichthys felis. Annals of the New York Academy of Sciences 188: 80-97.

Tikunov, B. A. and L. C. Rome. 2009. Is high concentration of parvalbumin a requirement for superfast relaxation? Journal of Muscle Research and Cell Motility 30: 57-65.

Wilkins, M.R., J. C. Sanchez, K.L. Williams, and D.F. Hochstrasser. 1996 Electrophoresis 17, 830-838.

Zelick,R., D.A. Mann and A.N. Popper. 1999. Acoustic communication in fishes and forgs. PP.364-411. In Comparative Hearing: Fish and Amphibians. Springer, New York.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.190.144
論文開放下載的時間是 校外不公開

Your IP address is 3.15.190.144
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code