Responsive image
博碩士論文 etd-0902109-112806 詳細資訊
Title page for etd-0902109-112806
論文名稱
Title
藉沃特拉級數方法分析砷化銦鎵假晶式高電子遷移率電晶體非線性特性
Nonlinear Characteristics of InGaAs PHEMT with Volterra Series Analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-14
繳交日期
Date of Submission
2009-09-02
關鍵字
Keywords
非線性特性、沃特拉級數
Volterra Series, Nonlinear Characteristics
統計
Statistics
本論文已被瀏覽 5637 次,被下載 0
The thesis/dissertation has been browsed 5637 times, has been downloaded 0 times.
中文摘要
本論文利用沃特拉級數具備處理記憶性非線性元件行為的特性,進行微波元件的非線性分析,並實際量測元件進行建模,建立一可沃特拉分析之非線性模型,內容主要分為三部份,第一部分主要是針對元件非線性現象及非線性分析理論方法做探討,並對幂級數與沃特拉級數做推導比較分析其特性上之差異。第二部份則是說明本論文中使用之砷化銦鎵假晶式高電子遷移率電晶體基本物理特性,介紹分析需要用到的元件小訊號模型及電流與電容的非線性方程式擬合步驟及方法,並說明如何透過所得之非線性模型進行沃特拉級數分析以及程式操作之程序化流程。第三部份針對本研究中的量測平台及量測考量做說明,並實際利用穩懋0.15μm砷化銦鎵製程之高電子遷移率電晶體以晶圓級量測,透過上述模型建立流程及電路分析方法做非線性特性分析。
Abstract
This thesis studies the nonlinear characteristics of microwave devices by Volterra series because it can analyze the nonlinear devices with memory. And a nonlinear model was established by measurement data for Volterra series analysis. This content is composed of three parts. The first part devote to introduce the nonlinear phenomenon and theories of nonlinear analysis. The difference between power series and Volterra series could be realized by deriving them. The second part is to introduce the physical characteristics of pHEMTs and demonstrate the procedure of establishing small signal model and fitting nonlinear equations of currents and capacitances, and a process of nonlinear model analysis by Volterra series is shown. The third part is to describe the experimental arrangements and analyze nonlinear characteristics of pHEMTs actually with above methods. And the relationship among nonlinear sources was discussed. The device was fabricated by WIN 0.15μm InGaAs process and measured by on wafer measurements.
目次 Table of Contents
目錄 I
圖目錄 III
表目錄 VI
第一章 簡介 1
1.1背景及研究動機 1
1.2章節簡介 2
第二章 非線性分析方法之理論基礎 3
2.1非線性現象 3
2.1.1諧波失真 3
2.1.2交互調變失真 3
2.1.3飽和現象 4
2.1.4串調變現象 4
2.1.5 AM-to-PM 轉換 5
2.1.6贅餘響應 5
2.2冪級數之理論與應用介紹 6
2.3沃特拉級數之理論分析 12
2.4非線性電流之分析 17
2.5非線性電容之分析 20
第三章 假晶式高電子遷移率電晶體元件模型之理論基礎 22
3.1假晶式高電子遷移率電晶體(pHEMT)元件簡介 22
3.2假晶式高電子遷移率電晶體小訊號模型建立 26
3.3利用非線性經驗方程式描述假晶式高電子遷移率電晶體 31
3.4假晶式高電子遷移率電晶體的非線性電容 34
3.5假晶式高電子遷移率電晶體模型利用沃特拉級數分析 39
第四章 實驗與量測架構 44
4.1量測考量 44
4.2散射參數量測 47
4.3電流電壓曲線量測 49
4.4 雙頻激發測試 50
4.5 元件特性模擬及驗證比較 52
第五章 結論 57
參考文獻 58
參考文獻 References
參考文獻
[1]G. S. Sandhu and A. Alphones, “OFDM modulation study for a radio over fiber system for wireless LAN (IEEE 802.11a),” in Proc. 4th Int. Conf. Information, Communication, Signal Processing–Pacific Conf. Multimedia (ICICS-PCM 2003), Dec. 2003.
[2]H. Sugimoto, D. Sasagawa, Y. Suzuki, S. Watanabe, and T. Sato, “Higher data rate wireless LAN system based on OFDM, ” in Proc. 5st Int. Symp. Wireless Personal Multimedia Communications, Nov. 2002, pp. 734-737.
[3]C. Snow, L. Lampe, and R. Schober, “Analysis of the impact of WiMAX-OFDM interference on multiband OFDM,” in Ultra-Wideband, 2007. ICUWB 2007. IEEE International Conference on, pp. 2007, 761-766.
[4]P. Colantonio, F. Giannini, E. Limiti, and A. Nanni, “Investigation of IMD asymmetry in microwave FETs via Volterra series,” in Symp. Gallium Arsenide and Other Semiconductor Application, Oct. 2005. European, pp. 53-56.
[5]C. C. Huang and K. Y. Chen, “On the solution accuracy of FET nonlinear current model extraction for Volterra-series analysis,” Microwave and Optical Technology Lett., vol. 45, pp. 400-402, Jun 5 2005.
[6]C. C. Huang and K. Y. Chen, “Parameter extraction of InGaP/GaAs HBT nonlinear current characteristics for Volterra series analysis,” Microwave and Optical Technology Lett., vol. 47, pp. 349-353, Nov 20 2005.
[7]M. Y. Jeon , B. G. Kim , Y. J. Jeon and Y. H. Jeong “A technique for extracting small-signal equivalent-circuit elements of HEMTs,” IEICE Trans. Electron., vol. E82-C, pp. 1968, Nov. 1999.
[8]B. Luo, Y. X. Guo, S. Y. Wong, and L. C. Ong, “Modeling of 0.15 um InGaAs pHEMT up to 60 GHz,” in Radio-Frequency Integration Technology, 2007. RFIT 007. IEEE International Workshop on, pp. 286-289 2007.
[9]S. A. Maas, Nonlinear Microwave And RF Circuits, Artech House, Norwood, MA 2003.
[10]P. W. a. W. Sansen, Distortion Analysis of Analog Integrated Circuits, Dordrecht: Kluwer 1998.
[11]G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1151-1159, July 1988.
[12]R. Tayrani, J. E. Gerber, T. Daniel, R. S. Pengelly, and U. L. Rohde, “A new and reliable direct parasitic extraction method for MESFETs and HEMTs,” in Proc. of 23rd European Microwave Conf.,Oct.1993 pp. 451-453.
[13]A. Caddemi , G. Crupi and N. Donato “A robust and fast procedure for the determination of the small signal equivalent circuit of HEMTs,” Microelectron. J., vol. 35, pp. 431, May 2004.
[14]M. Tayel and A. Elgendy, “Extraction of HEMT intrinsic elements form S-parameter measured values,” in AIML 06 International Conf., pp. 95-100, 13 - 15 June 2006.
[15]N. Berroth and R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 891-895, 1990.
[16]C. C. Meng and G. H. Huang, “"High frequency" I-V curves for GaAs MESFETs through unique determination of small signal circuit parameters at multiple bias points, ” in Proc. Asia-Pacific Microwave Conf., Vol. 2,Dec. 2001, pp. 709-711.
[17]J. M. O'Callaghan and J. B. Beyer, “A large signal nonlinear MODFET model from small signal S-parameters,” in Microwave Symp. Dig., IEEE MTT-S, Jun. 1989, pp. 347-350 vol.1.
[18]I. Angelov, H. Zirath, and N. Rorsman, “A new empirical nonlinear model for HEMT and MESFET devices,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2258-2266, Dec. 1992.
[19]S. H. Lee, “Empirical nonlinear modeling for RF MOSFETs,” Int. J. Rf and Microwave Computer-Aided Engineering, vol. 14, pp. 182-189, Mar 2004.
[20]P. Roblin, S. C. Kang, and H. Morkoc, “Analytical solution of the velocity-saturated MOSFET/MODFET wave equation and its application to the prediction of the microwave characteristics of MODFET's,” IEEE Trans. Electron Devices, vol. 37, pp. 1608-1622, July 1990.
[21]D. Arnold, W. Kopp, R. Fischer, J. Klem, and H. Morkoc, “Bias dependence of capacitances in modulation-doped FET's at 4 GHz, ” IEEE Electron Device Lett. , vol. 5, pp. 123-125, 1984.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.142.249.101
論文開放下載的時間是 校外不公開

Your IP address is 3.142.249.101
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code