Responsive image
博碩士論文 etd-0902109-151714 詳細資訊
Title page for etd-0902109-151714
論文名稱
Title
應用現地生物復育技術整治受三氯乙烯污染之地下水
Application of in-situ bioremediation technology to remediate trichloroethylene-contaminated groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-29
繳交日期
Date of Submission
2009-09-02
關鍵字
Keywords
自然衰減模式、重質非水相液體、含氯有機溶劑、三氯乙烯、現地生物復育
trichloroethylene, Chlorinated organic compounds, dense, In-situ bioremediation
統計
Statistics
本論文已被瀏覽 5663 次,被下載 0
The thesis/dissertation has been browsed 5663 times, has been downloaded 0 times.
中文摘要
含氯有機溶劑常被廣泛的應用於不同形式的工業製程中,其主要被應用於乾洗過程及半
導體製程的清洗溶劑,由於其特性為比重較水重且溶解度低,當其洩漏至地下水後,無法完
全溶解並形成重質非水相液體,其中又以三氯乙烯最具代表性。現地生物復育法為處理受三
氯乙烯污染之地下水的整治技術之一,相較於其他整治方式較為簡單、低成本且具良好處理
的成效。以生物復育法整治三氯乙烯,需確保污染場址中有適當的污染物及微生物、電子接
受者及營養鹽之存在。
本研究場址位於高雄市,場址之工業製程別含有電子製品業、半導體工業及精密光學工
業等,場址內地下含水層受到四氯乙烯、三氯乙烯及1.1-二氯乙烯等含氯有機溶劑污染,其
中部份區域三氯乙烯濃度超過管制標準之0.05 mg/L 及1.1-二氯乙烯管制標準之0.07 mg/L。
本研究採用好氧及厭氧生物復育技術做為整治本場址之方式,進行整治之可行性評估。
根據地下水流向順序、污染物分佈等因素,於場址中規劃好氧及厭氧生物復育整治區。好氧
整治區內設置(含既有井C029)四口整治井,由上游至下游依序為BW1-1、C029、BW1-2 及
BW1-3,四口井之平均三氯乙烯初始濃度分別為0.0853 mg/L、0.1340 mg/L、0.0668 mg/L 及
0.0323 mg/L,其中又以C029 濃度為最高。本研究中添加適當之糖蜜及營養鹽做為好氧微生
物降解三氯乙烯之營養基質,並利用空壓機將氧氣打入於好氧區之地下水中,保持最上游之
監測井BW1-1 維持溶氧值在7-8 mg/L-O2 之間。經213 天整治後,濃度皆降至管制標準值以
下,其濃度分別為N.D、0.0038 mg/L、0.0211 mg/L 及0.0161 mg/L;在厭氧整治區內(含既有
井SW-4)四口整治井,由上游至下游依序為BW2-1、SW-4、BW2-2 及BW2-3,四口井之平
均三氯乙烯初始濃度分別為0.0399 mg/L、0.1460 mg/L、0.1030 mg/L 及0.0492 mg/L,厭氧區
中四口整治井有三口超過管制標準,藉由添加糖蜜及營養鹽做為厭氧微生物共代謝三氯乙烯
之營養基質,經193 天整治後,濃度皆降到接近或低於管制標準值,分別為0.0043 mg/L、0.0687
mg/L、0.0365 mg/L 及0.0289 mg/L。
本場址利用好氧及厭氧生物復育整治受三氯乙烯污染之地下水,經由美國環保署之
BIOCHLOR 自然衰減模式模擬、降解副產物分析、污染分布範圍大小及相關水質參數之分
析,顯示本場址復育具有一定之成果,可以作為提供類似場址整治之參考依據。
Abstract
Chlorinated organic compounds are widely used in various industrial processes. Due to their
high density and low water solubility, they are mainly utilized as cleaning solvents in dry cleaning
operations, as well as semiconductor manufacturers. Many chlorinated organic compounds spilled
sites contain residuals, which present in a pure liquid phase (dense non-aqueous phase liquids,
DNAPLs). Trichloroethylene (TCE) is the most typical compound as a result. In situ bioremediation
has been successfully used for the removal of TCE. This process has several advantages, such as
relative simplicity, low cost, and potentially remarkable efficiency in contamination removal than
others. By using the in situ bioremediation to remediate TCE contaminated groundwater, it must
ensure (1) biodegradability of contaminants, and the presence of a competent biodegrading
population of microorganisms, (2) presence of electron acceptors, and (3) environment condition
and, nutrient sources.
A field study for biodegradation TCE through molasses injection was conducted at the
industrial trading estate in Kaohsiung City. The study included electronic products, semiconductor,
nicety optical industry and so on. Molasses, nitrate and phosphate were introduced from injection
well (BW1-1 and BW2-1) into aerobic and anaerobic groundwater contaminated site.
In the aerobic zone, there were four wells being monitored: BW1-1, C029, BW1-2 and BW1-3.
After 213 days of biostimulation treatment, TCE concentration detection results showed TCE
concentrations in all wells monitored. BW1-1 and C029, there was a sharp decrease from 0.0853
mg/L to below the detection limit and from 0.1340 mg/L to 0.0038 mg/L. BW1-2 and BW1-3
showed a slight decrease from 0.0668 mg/L to 0.0211 mg/L and from 0.0323 mg/L to 0.0161 mg/L.
After treatments, TCE concentrations in all wells monitored were dropped to 0.05 mg/L. In
anaerobic zone, there were four wells being monitored: BW2-1, SW-4, BW2-2 and BW2-3. After
193 days of biostimulation treatment, TCE concentration detection results showed TCE
concentrations in all wells monitored. BW2-1, SW-4, BW2-2 and BW2-3 all had a slight decrease
from 0.0399 mg/L to 0.0043 mg/L, from 0.14603 mg/L to 0.0687 mg/L, from 0.1030 mg/L to
0.0365 mg/L and from 0.0492 mg/L to 0.0289 mg/L.
According to the results from BIOCHLOR modeling, elevated aqueous concentration of
chloroethenes with a classical reduction pathway for TCE leading to an accumulation of vinyl
chloride and ethane. All the results revealed that bioremediation technology is one of the more
feasible approaches to clean up TCE contaminated groundwater in this field.
目次 Table of Contents
謝誌.................................................................................................................................................... II
摘要...................................................................................................................................................III
Abstract .............................................................................................................................................IV
目錄.................................................................................................................................................... V
圖目錄............................................................................................................................................. VII
表目錄............................................................................................................................................ VIII
第一章 前言.......................................................................................................................................1
1.1 研究緣起........................................................................................................................1
1.2 研究目的........................................................................................................................3
第二章 文獻回顧...............................................................................................................................4
2.1 地下水含氯有機化合物之污染來源.............................................................................4
2.1.1 含氯有機化合物之特性及危害..........................................................................6
2.1.2 DNAPL 傳輸概念................................................................................................9
2.2 污染整治技術種類.......................................................................................................13
2.2.1 生物復育技術之定義.......................................................................................14
2.2.2 含氯有機化合物之反應...................................................................................15
2.2.3 共代謝機制.......................................................................................................17
2.2.4 好氧生物復育機制...........................................................................................18
2.2.5 厭氧生物復育機制...........................................................................................20
2.3 類似場址回顧...............................................................................................................24
第三章 實驗與方法..........................................................................................................................25
3.1 現地場址背景介紹......................................................................................................25
3.1.1 場址介紹...........................................................................................................25
3.1.2 氣象條件...........................................................................................................26
3.1.3 地質條件...........................................................................................................29
3.1.4 地形條件...........................................................................................................32
3.1.5 地下水位及流向...............................................................................................33
3.1.6 目標污染物分布範圍.......................................................................................37
3.2 實驗架構......................................................................................................................39
3.2.1 實驗架構流程圖...............................................................................................39
3.2.2 前置作業...........................................................................................................40
3.2.3 現場作業及採樣方式........................................................................................47
3.2.4 水質分析分法....................................................................................................49
3.3 BIOCHLOR 模式.........................................................................................................52
3.3.1 BIOCHLOR 模式使用限制...............................................................................52
3.3.2 BIOCHLOR 模式原理......................................................................................53
3.3.3 BIOCHLOR 模式之輸入參數..........................................................................54
第五章結果與討論............................................................................................................................58
4.1 目標污染物濃度趨勢分析..........................................................................................58
4.2 降解副產物趨勢分析..................................................................................................62
4.3 電子接受者與生物復育指標參數變化分析..............................................................65
4.4 BIOCHLOR 模式之模擬結果....................................................................................78
4.5 復育後目標污染物模擬比較......................................................................................81
4.6 整治費用評估...............................................................................................................83
第五章 結論與建議..........................................................................................................................86
5.1 結論..............................................................................................................................86
5.2 建議..............................................................................................................................87
參考文獻 References
經濟部中央地質調查所 (2009) 地質資訊調查,
http://www.moeacgs.gov.tw/app/index.jsp?cat=2。
經濟部工業局 (2004) 土壤及地下水污染整治技術手冊-生物處理技術
勞工安全衛生研究所 (2009) 物質安全資料表,http://www.iosh.gov.tw/Msds.aspx。
行政院環境保護署 (2009) 行政院環保署公告網,
http://atftp.epa.gov.tw/announce/。
行政院環境保護署 (2009) 土壤及地下水整治往,
http://sgw.epa.gov.tw/public/0401.asp。
張永宜 (2007) “乳化奈米級零價鐵處理水溶液中之三氯乙烯”,國立中山大學 環
境工程研究所 碩士論文。
郭雅鈴 (2006) “應用監測式自然衰減法整治受石油碳氫化合物污染之地下水”,
國立中山大學 環境工程研究所 碩士論文。
吳博章 (2003) “半連續培養泥漿法共代謝三氯乙烯生物降解之研究”,國立成功
大學 環境工程系 碩士論文。
雷世恩 (1999) “以生物處理法整治三氯乙烯及四氯乙烯污染之場址”,國立中山
大學 環境工程研究所 碩士論文。
Adamson, D. T., McDade, J. M. and Hughes, J. B. (2003) “Inoculation of a DNAPL
source zone to initiate reductive dechlorination of PCE”, Environmental
Science and Technology, 37(11), pp.2525-2533.
Adrian, L., Szewzyk, U., Wecke, J. and Gorisch, H. (2000) “Bacterial
dehalorespiration with chlorinated benzenes”, Nature, 408, pp.580-583.
Amos, B. K, Christ, J. A, Abriola, L. M, Pennell, D. and Loffler, F. E. (2007)
“Experinental evaluation and mathematical modeling of microbially
enhanced petrachloroethene (PCE) dissolution”, Environmental Science and
Technology, 41, pp.963-970
ATSDR. (2007) “Trichloroethylene(TCE) Toxicity.U.S. Department of Health and
human services”, Agency for Toxic Substances and Disease Registry
Division of Toxicology and Environmental Medicine .
Aulenta, F., Majone, M. and Tandoi, V. (2006) “Enhanced anaerobic bioremediation
of chlorinated solvents: environmental factors influencing microbial activity
91
and their relevance under field conditions”, Journal of Chemical Technology
and Biotechnology, 81, pp.1463-1474.
Aulenta, F., Majone, M., Verbo, P. and Tandoi, V. (2002) “Complete dechlorination of
tetrachloroethene to ethene in presence of methanogenesis and acetogenesis
by an anaerobic sediment microcosm”, Biodegradation, 13, pp.411-424.
Aulenta, F., Pera, A., Rossetti, S., Petrangeli, P. and Majone, M. (2007) “Relevance of
side reactions in anaerobic reductive dechlorination microcosms amended
with different electron donors”, Water Research, 41, pp.27-38.
Azizian, M. F., Istok, J. D. and Semprini, L. (2007) “Evaluation of the in-situ aerobic
cometabolism of chlorinated ethenes by toluene-utilizing microorganisms
using push-pull tests”, Journal of Contaminant Hydrology, 90(1-2),
pp.105-124.
Bedient, P.B., H.S. Rifal, and C.J. Newell., (1999) “Ground Water Contamination:
transport and remediation”, 2nd Edition. Prentice-Hall.
Borden, R. C. (2007) “Effective distribution of emulsified edible oil for enhanced
anaerobic bioremediation”, Journal of Contaminant Hydrology, 94, pp.1-12
Brar, S. K., Verma, M. R., Surampalli, Y., Misra, K., Tyagi, R. D. and N. Meunier, J. F.
(2006) “Blais, Bioremediation of hazardous wastes - a review”, Practice
Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10,
pp.59-72.
Cabirol, N., Jacob, F., Perrier, J., Fouillet, B. and Chambon, P. (1998) “Interaction
between methanogenic and sulfate-reducing microorganisms during
dechlorination of a high concentration of tetrachloroethylene”, The Journal
of General and Applied Microbiology, 44, pp.297-301.
Chen, Y. M., Lin, T. F., Huang, C. and Lin, J. C. (2008) “Cometabolic degradation
kinetics of TCE and phenol by Pseudomonas putida”, Chemosphere, 72(11),
pp.1671-1680.
Chen, Y. M., Lin, T. F., Huang, C., Lin, J. C. and Hsieh, F. M. (2007) “Degradation of
phenol and TCE using suspended and chitosan-bead immobilized
Pseudomonas putida”, Journal of Hazardous Materials, 148(3), pp.660-670.
Da Silva, M. L. B., Daprota, R. C., Gomez, D. E., Hughes, J. B., Ward, C. H., Alvarez,
J. J. (2006) “Comparison of bioaugmentation and biostimulation for the
enhancement of dense nonaqueous phase liquid source zone
92
bioremediation”, Water Environment Research, 78(13), pp.2456-2465.
Dabrock, B., Riedel, J., Bertram, J. and Gottschalk, G. (1992) “Isopropylbenzene
(cumene)-a new substrate for the isolation of trichloroethene-degrading
bacteria”, Archives of Microbiology, 158, pp.9-13.
Duhamel, M. A. (2005) “Community Structure and dynamics of Anaerobic
Chlorinated Ethene-Degrading Enrichment Cultures”, PhD dissertation,
University of Toronto, Toronto, Ont.
Fennell, D. E. and Gossett, J. M. (2003) “Microcosms for site specific evaluation of
enhanced biological reductive dehalogenation”, in Dehalogenation:
Microbial Processes and Environmental Applications, ed. by Haggblom
MM and Bossert ID. Kluwer Academic, Boston, MA, pp.385-420.
Freedman, D. L. and Gossett, J. M. (1989) “Biological reductive dechlorination of
tetrachloroethylene and trichloroethylene to ethylene under methanogenic
conditions”, Applied and Environmental Microbiology, 55(9),
pp.2144-2151.
Han, Y. L., Kuo, M. C. T., Tseng, I. C. and Lu, C. J. (2007) “Semicontinuous
microcosm study of aerobic cometabolism of trichloroethylene using
toluene”, Journal of Hazardous Materials, 148(3), pp.583-591.
Harkness, M. R. (2000) “Economic considerations in enhanced anaerobic
degradation”, Bioremediation and Phytoremediation of Chlorinated and
Recalcitrant Compounds. 2nd Internat. Conf. Remediation of Chlorinated
and Recalcitrant Compounds. Monterey, CA.
He, J., Ritalahti, M. K, Yang, K. U, Koeningsberg, S. S. and Loffler, F. E. (2003)
“Detoxification of vinyl chloride to ethene coupled to growth of an
anaerobic bacterium”, Nature, 424, pp.62-65
He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K. M. and Loffler, F. E. (2005)
“Isolation and characterization of Dehalococcoides sp. Strain FL2, a
trichloroethene (TCE)- and cis-1,2-dichloroethene-respiring anaerobe”,
Environmental Microbiology, 7, pp.1442-1450.
Heimann, A.C., Friis, A.K. and Jakobsen, R. (2005) “Effects of sulfate on anaerobic
chloroethene degradation by an enriched culture under transient and
steady-state hydrogen supply”, Water Research, 39, pp.3579-3586.
Hendrickson, E. R., Payne, J. A. Young, R. M. Star, M. G. Perry, M. P. Fahnestock, S.
Ellis, D. E. and Ebersole, R. C. (2002) “Molecular analysis of
93
Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites
throughout North America and Europe”, Applied and Environmental
Microbiology, 68, pp.485-495.
Hoelen, T. P. and Reinhard, M. (2004) “Complete biological dehalogenation of
chlorinated ethylenes in sulfate containing groundwater”, Biodegradation,
15(6), pp.395-403.
Hughes, J. B., Duston, K. L. and Ward, C. H. (2002) “Engineered bioremediation”,
Ground-Water Remediation Technologies Analysis Center(GWRTAC).
TE-02-03.
Isalou, M. and Sleep, B. E. (1998) “Biodegradation of High Concentrations of
Tetrachloroethene in a Continuous Flow column System”, Environmental
Science and Technology, 22(32), pp.3579-3585.
ITRC (The Interstate Technology & Regulatory Council), (2007) “In Situ
Bioremediation of Chlorinated Ethene DNAPL Source Zones: Case
Studies”.
ITRC (The Interstate Technology & Regulatory Council), (2008) “In Situ
Bioremediation of Chlorinated Ethene DNAPL Source Zones”.
Kao, C. M., Huang, W. Y., Chang, L. J., Chien, H. Y. and Hou, F. (2005) “Application
of monitored natural attenuation to remediate a petroleum- hydrocarbon
spill site”, Water Science and Technology, 53, pp.321-328.
Kim, Y., Istok, J. D. and Semprini, L. (2006) “Push-pull tests evaluating in situ
aerobic cometabolism of ethylene, propylene, and cis-1,2-dichloroethylene”,
Journal of Contaminant Hydrology, 82(1-2), pp.165-181.
Kim, Y., Istok, J. D. and Semprini, L. (2008) “Single-well, gas-sparging tests for
evaluating the in situ aerobic cometabolism of cis-1,2-dichloroethene and
trichloroethene”, Chemosphere, 71(9), pp.1654-1664.
Kocamemi, B. A. and Çeçen, F. (2005) “Cometabolic degradation of TCE in enriched
nitrifying batch systems”, Journal of Hazardous Materials, B125,
pp.260-265.
Lee, M. H., Clingenpeel, S. C., Leiser, O. P., Wymore, R. A., Sorenson Jr, K. S. and
Watwood, M. E. (2008) “Activity-dependent labeling of oxygenase
enzymes in a trichloroethene-contaminated groundwater site”,
Environmental Pollution, 153(1), pp.238-246.
Lu, X., Wilson, J. T., Kampbell, D. H. (2006) “Relationship between Dehalococcoides
94
DNA in ground water and rates of reductive dechlorination at field scale”,
Water Research, 40, pp.3131-3140.
Maier, R. M., Pepper, I. L., and Gerba, C. P. (2000) “Environmental microbiology”,
Academic Press, San Diego.
Maymo-Gatell, X., Chien, Y. T., Gosset, J. M., Zinder, S. H. (1997) “Isolation of a
bacterium that reductively dechlorinates tetrachloroethene to ethane”,
Science, 276, pp.1568-1571.
McCarty, P. L. (1994) “An overview of anaerobic transformation of chlorinated
solvents”. EPA Symposium on Intrinsic Bioremediation of Ground Water.
Denver, CO: 135-142.
Müller, J. A., Rosner, B. M., von Abendroth, G. Meshulam-Simon, G. McCarty, P. L.
and Spormann, A. M. (2004) “Molecular Identification of the Catabolic
Vinyl Chloride Reductase from Dehalococcoides sp. Strain VS and Its
Environmental Distribution”, Applied and Environmental Microbiology,
70(8), pp.4880-4888.
Nelson, D. K., Hozalski, R. M., Clapp, L. W., Semmens, M. J. and Novak, P. J. (2002)
“Effect of nitrate and sulfate on dechlorination by a mixed hydrogen-fed
culture”, Bioremediation, 6, pp.225-236.
Rittmann, B. E. and McCarry, P. L. (2001) “Environmental Biotechnology: Principles
and Application”, McGraw-Hill, Boston.
Seagern, E. and J. Becker (2002) “Review of natural attenuation of BTEX and MTBE
in groundwater”, Practice Periodical of Hazardous, Toxic and Radioactive
waste management, 6(3), pp156-172.
Semprini, L. (1997) “Strategies for the aerobic co-metabolism of chlorinated
solvents” Current Opinion in Biotechnology, 8, pp.296-308.
Siegrist, R. L. (2002) “Fundamentals of In Situ Chemical Oxidation (ISCO)”,
Teleconference of In Situ Treatment of Groundwater Contaminated with
Non-aqueous Phase Liquids, Dec. 10-11, , Chicago, IL.
Simmonds, A. C. (2007) “Dechlorination Rates in KB-1, a Commercial
Trichloroethylene-Degrading Bacterial Culture”, M.A.Sc. thesis, University
of Toronto, Toronto, Ont.
Smidt, H., and De Vos, W. M. (2004) “Anaerobic microbial dehalogenation”, Annual
Review of Microbiology, 58, pp.42-73
Sung, Y., Ritalahti, K. M., Apkarian, R. P., and Loffler, F. E. (2006) “Quantification
95
PCR confirms purity of strain GT, a novel
trichloroethene-to-ethene-respiring Dehalococcoides isolate”, Applied and
Environmental Microbiology, 72, pp.1980-1987.
Tartakovsky, B., Manuel, M. E. and Guiot, S. R. (2005) “Degradation of
trichloroethylene in a coupled anaerobic-aerobic bioreactor: Modeling and
experiment”, Biochemical Engineering Journal, 26(1), pp.72-81.
U.S. Environmental Protection Agency (EPA) (2000) “Engineered Approaches to In
Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field
Applications”, EPA 542-R-00-008.
U.S. Environmental Protection Agency (EPA) (2007) “Treatment technologies for site
cleanup: annual status report (twelfth edition)”, EPA-542-R-07-012
Vogel, T. M., Criddle, C. S. and McCarty, P. L. (1987) “Transformation of
halogenated aliphatic compounds”, Environmental Science Technology,
21(8), pp.722-736.
Waterloo Centre for Ground Water Research (1989) “Dense Immiscible Phase
Contaminants in Porous and Fractured Media”, University of Waterloo
Short Course, Kitchener, Onts.
Wartenberg D., Reyner D., Scott C. S., (2000) “Trichloroethylene and cance
pidemiologic evidence”, Environ Health Perspect, 108 (2), pp. 161-76.
Wilson, J. T. and Wilson, B. G. (1985) “Biotransformation of trichloroethylene in soil”,
Applied and Environmental Microbiology, 49(1), pp. 242-243.
Wu, Y. W., Huang, G. H., Chakma, A. and Zeng, G. M. (2005) “Separation of
petroleum hydrocarbons from soil and groundwater through enhanced
bioremediation”, Energy Sources, 27, pp.221-232.
Yang, Y. and McCarty, P. L. (2002) “Comparison between donor substrates for
biologically enhanced tetrachloroethene DNAPL dissolution”,
Environmental Science and Technology, 36(15), pp.3400-3404.
Yang, Y. and McCarty, P. L. (2000) “Biologically enhanced dissolution of
tetrachloroethene DNAPL”, Environmental Science and Technology, 34(14),
pp.2979-2984.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.103.202
論文開放下載的時間是 校外不公開

Your IP address is 3.147.103.202
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code