Responsive image
博碩士論文 etd-0902110-102732 詳細資訊
Title page for etd-0902110-102732
論文名稱
Title
雙饋式感應發電機之低電壓忍受能力改善方法研究
A study on low voltage ride-through capability improvement for doubly fed induction generator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-19
繳交日期
Date of Submission
2010-09-02
關鍵字
Keywords
風場、低電壓忍受能力曲線、雙饋式感應風力發電機、低電壓忍受能力、截波器、消弧電路
Wind Farm, Chopper, Doubly-fed Induction Generator, Low Voltage Ride-Through Capability, Crowbar, Voltage Tolerance Curve
統計
Statistics
本論文已被瀏覽 5637 次,被下載 3437
The thesis/dissertation has been browsed 5637 times, has been downloaded 3437 times.
中文摘要
當併入電力系統的風場容量越趨增加時,對於風力發電機的併聯規範也越來越嚴格,若系統發生短路故障而造成風機因低電壓而跳脫,會造成系統的發電量與用電量不平衡,則可能導致電力系統的不穩定。本論文比較了五種不同的低電壓忍受能力改善方法對風機低電壓忍受能力的影響,第一種是以增加轉子阻抗,第二種是使用截波器,第三種是使用消弧電路,第四種是綜合以上方法同時使用,第五種為利用市電側轉換器做電壓提升的功用。本論文使用Digsilent 模擬軟體來建立風力發電機與市電併聯的模組,模擬中所使用的風機類型為具pitch control 控制的雙饋式感應發電機。本研究在不同的風機輸出端電壓與持續時間下,比較四種方法對風機低電壓忍受能力的改善情況。模擬結果顯示,並用這些改善裝置方法最能夠讓風機度過低電壓的狀態。
Abstract
Since large scale unscheduled tripping of wind power generation could lead to power system stability problem. Thus network interconnection regulations become more rigid when the wind power penetration reaches a non-neglible portion of the total power generation. This thesis presents a comparison of five different low voltage ride through (LVRT) capability enhancement technologies, i.e., additional rotor resistance, DC bus chopper, crowbar on rotor, the combination of above schemes, and grid voltage support by controlling grid side converter. System simulations are performed under Digsilent environment with model and control blocks provided by
the package. Additional models are developed to implement the LVRT enhancement schemes studied. A Doubly-Fed Induction Generator (DFIG) with pitch control is used to simulate different system fault scenarios with different voltage sag magnitude and duration time. Simulation results indicate that different enhancement schemes provide various levels in relieving DC bus overvoltage, rotor winding overcurrent, and overspeed problems, and the method combines all tested schemes seems to provide the best result.
目次 Table of Contents
目錄
摘要..................................................... I
Abstract ................................................ II
目錄................................................... III
圖目錄................................................... V
表目錄................................................ VIII

第一章 緒論 ............................................ 1
1.1 研究動機與目的....................................... 1
1.2 風力發電現況簡介..................................... 2
1.3 風力發電機架構簡介................................... 4
1.4 各國之電力系統併聯準則對LVRT 及無效功率的規定........ 7
1.5 風力發電機對系統故障之忍受能力相關研究.............. 11
1.6 論文架構............................................ 12
第二章 雙饋式感應發電系統之模型建構......................... 13
2.1 雙饋式感應發電機基本原理............................ 13
2.2 雙饋式感應發電機之動態模型.......................... 13
2.3 風渦輪機的數學模型.................................. 19
2.4 最大功率追蹤........................................ 22
2.5 扇葉角度控制器...................................... 23
2.6 雙饋式感應發電機控制架構............................ 25
第三章 雙饋式感應發電機低電壓忍受能力的改善方法............. 31
3.1 雙饋式感應發電機基本控制原理及故障時的運轉情況...... 31
3.1.1 基本控制原理............................... 31
3.1.2 雙饋式感應發電機故障動態情況............... 33
3.2 提高轉子電阻之改善原理.............................. 35
3.3 使用DC-chopper 之改善原理........................... 35
3.4 增加 Crowbar 保護裝置之改善原理...................... 37
3.5 轉子阻抗、截波器、Crowbar 並用...................... 38
3.6 以市電側轉換器提供虛功之低電壓忍受能力改善原理...... 39
第四章 動態模擬結果與比較................................... 41
4.1 模擬基本架構介紹.................................... 41
4.2 鼠籠式感應發電機與雙饋式感應發電機低電壓忍受能力模擬比較 ............................................. 43
4.3 運用電壓忍受能力改善策略的發電機動態響應比較........ 45
4.3.1 雙饋式感應發電機低電壓動態響應............. 45
4.3.2 增加轉子電阻模擬........................... 48
4.3.3 DC-chopper 應用模擬........................ 52
4.3.4 消弧電路Crowbar 應用模擬................... 54
4.3.5 轉子電阻、截波器、Crowbar 並用模擬......... 57
4.3.6 以市電側轉換器提供虛功之改善方法模擬....... 59
4.4 模擬結果分析與討論.................................. 61
第五章 結論與未來建議....................................... 69
5.1 結論 ............................................. 69
5.2 未來研究方向........................................ 70
附錄一 台灣電力公司之電力系統併聯準則................... 71
附錄二 發電機內部參數與線路參數表....................... 76
參考文獻................................................ 77
參考文獻 References
參考文獻
[1] Global Wind Energy Council:http://www.gwec.net/index.php?id=13
[2] M. Behnke, A.Ellis, Y.Kazachkov, T. McCoy, E.Muljadi, W.Price and J. Sanchez-Gasca, “Development and Validation of WECC Variable Speed Wind Turbine Dynamic Models for Grid Integration Studies,” Proceedings of AWEA’s 2007 Wind Power Conference, Los Angeles, California June 2007.
[3] 台灣電力公司再生能源發電系統倂聯技術要點,台灣電力公司, 2008 年。
[4] L. Holdsworth, N. Jenkins, and G. Strbac, “Electrical Stability of Large, Offshore Wind Farms,” IEE AC-DC Power Transmission, 28-30 November 2001 Conference Publication.
[5] B. Singh and S.N. Singh, “Wind Power Interconnection into the Power System: A Review of Grid Code Requirements.” Proceedings of The Electricity Journal, Elsevier, vol.22, pages 54-63, June.
[6] Dynamic wind turbine models in power system simulation tool DIgSILENT, Riso-R-1400(ed.2)
[7] A.D. Hansena, G. Michalkeb, ”Failt ride-through capability of DFIG wind turbines,” Proceedings od Renewable Energy, vol.32, Issue9, pp.1594-1610, July 2007.
[8] W. Freitas, A. Morelato, and W. Xu, “Improvement of Induction Generator Stability Using Braking Resistors,” Trans. on Power Systems, vol.19, no2, pp. 1594-1610, July2007.
[9] C. Abbey, W. Li, L. Owatta, G. Jones, ” Power Electronic Converter Control Techniques for Improved Low Voltage Ride Through Performance in WTGs,” Proceedings of Power Electronic Specialists Conference, 2006.
[10]A. P. Jayam, N. K. Ardeshna, B.H. Chowdhury, “Application of STATCOM for Improved Reliability of Power Grid Containg a Wind Turbine,” Proceedings of IEEE Power and Energy Society General Meeting – Conversion and Delivery of Electrical Energy in the 21st Centiry,2008 IEEE.
[11]C. Rahmann, H.J. Haubrich, L. Vargas and M. B. C. Salles, “Investigation of DFIG with Fault Ride-Through Capability in Weak Power Systems,” Proceedings of Inter national Conference on Power Systems Transients (IPST2009) in Kyoto, Japan June 3-6,2009.
[12]D.T. Johnsen, W. Christiansen, “Optimisation of the Fault Ride Through strategy of a Wind Farm,” Danmarks Tekniske Universitet, Master’s Thesis, September 2006.
[13]I. Erlich, H. Wrede, and C. Feltes, “Dynamic Behavior of DFIG-Based Wind Turbines during Grid Faults,” Proceeings of Power Conversion Conference – Nagoya, 2007, pp.1195-1200
[14]林志鵬,以靜態同步補償器與動態電壓恢復器改善風力發電機低電壓忍受能力之研究,國立中山大學,碩士論文,民國99 年2月。
[15]林員正,雙饋式感應風力發電機組故障不間斷運轉控制策略之研究,國立清華大學,碩士論文,民國98 年7 月。
[16]洪嘉駿,雙饋式感應發電機轉子側電力轉換器控制技術開發與實現,國立清華大學,碩士論文,民國98 年7 月。
[17]J.B. Ekanayake, L. Holdsworth, N. Jenkins, “Comparison of 5th order and 3rd order machine models for doubly fed induction generator (DFIG) wind turbines,” Electric Power Systems Research, Vol.67, Issue3, December 2003, pp.207-215.
[18]T. Burton, D. Sharpe, N. Jendkins, and E. Bossanyi, Wind Energy Handbook, John Wiley& Sons Ltd., December 2001
[19]R. Smaili, L. Xu, and D.K. Nichols, “A new control method of permanent magnet generator for maximum power tracking in wind turbine application,” Proceedings of IEEE Power Engineering Society General Meeting, 2005.
[20]K. S. Kook, J. W. Smith, “Feasibility Study of the Taiwan Power Chang Hua North 300 MW Wind Farm,” EPRI report 2009.
[21]台灣電力公司再生能源發電系統併聯技術要點,台灣電力公司,2008 年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code