Responsive image
博碩士論文 etd-0902110-114526 詳細資訊
Title page for etd-0902110-114526
論文名稱
Title
台灣東南部黑潮海域之顆粒碳氮組成及其通量之時間序列變化
Time-series variability of particulate carbon and nitrogen compositions and their fluxes in the Kuroshio regime off southeastern Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-29
繳交日期
Date of Submission
2010-09-02
關鍵字
Keywords
黑潮、通量
Kuroshio, flux
統計
Statistics
本論文已被瀏覽 5658 次,被下載 53
The thesis/dissertation has been browsed 5658 times, has been downloaded 53 times.
中文摘要
黑潮是西太平洋主要的邊界流,其主軸流經台灣東部海域,目前鮮少有學者針對黑潮海域的沉降顆粒通量進行研究。本研究重點在於結合黑潮表層顆粒性有機碳的輸出通量,及深層沉降顆粒的各項碳氮通量,探討台灣東南部黑潮海域顆粒物質的全年時間序列變化,進而計算出沉降顆粒的碳衰變率與碳衰減值。
本研究於2008年4月至2009年12月間,利用錨碇式沉積物收集器收集KC測站 (21o28' N; 122o11' E) 兩個深度 (2000 m和3500 m) 的沉降顆粒,分析其質量通量 (mass flux),以及總碳 (TC)、顆粒性有機碳 (POC) 及總氮 (TN) 的含量。於佈放期間內,2009年9月至12月收集到大量顆粒物質,推測是由深海的偶發事件所帶來,故本研究不將此期間的數值列入討論及後續計算。各項參數分析結果如下,2000 m和3500 m的mass flux分別為162.3和201.6 mg m-2 d-1,POC含量分別是2.46和1.84 wt%,TN含量為0.31和0.23 wt%,C/N為9.27和9.21。計算後得到的POC flux是3.8和3.7 mgC m-2 d-1,TN flux為0.5和0.5 mgN m-2 d-1。
研究結果顯示,POC和TN的含量隨時間變化之趨勢頗為一致,應為相同的物理和生地化因子所控制。上述兩者在2000 m的變化均較3500 m的變化明顯;其中,由2000 m的變化範圍可看出,春夏變化大於秋冬變化,可能是受到表層的生物生產量隨季節改變的影響。將POC與TN flux做線性迴歸,其相關性相當良好 (R2 = 0.98),C/N平均值為9.23,可說明此處有機顆粒以沉降分解作用為主。
將本研究之黑潮KC測站與南海SEATS測站做比較,兩測站在季節變化及平均通量上皆呈現明顯差異。整體而言,KC站各項碳氮含量及通量皆低於SEATS站,而前者於夏季時通量較高,後者則是冬季較高,指出此兩海域之顆粒沉降過程有所不同。
結合KC站表層碳通量資料可計算出碳衰變率與碳衰減值,其中,碳輸出率 (e-ratio) 為0.08,表示表層基礎生產量約有8 %輸出至透光層底部 (120 m);衰減值 (b-value) 為0.53,此數值為碳通量從120 m至3500 m的指數衰減速率。相較於SEATS站 (e-ratio = 0.22,b-value = 0.97),KC站的e-ratio較小,但由於衰減速率較慢,所以輸送至深層的比率較大。最後,將黑潮b-value (0.53) 列入全球時間序列觀測網中,其值介於全球觀測網b-value範圍0.51~1.33之間。
Abstract
The Kuroshio current (KC) is the major current of the western Pacific Ocean, and its main stream flows northward off the east coast of Taiwan. Since there have been few researches on sinking particle flux in the regime of Kuroshio have been reported, a time-series sediment trap mooring was deployed to investigate the particulate organic carbon (POC) and total nitrogen (TN) and their fluxes at KC station (21o28' N, 122o11' E) at depths of 2000 m and 3500 m from April 2008 to December 2009.
Results show that, the mass fluxes at 2000 m and 3500 m of mean are 162.3 mg m-2 d-1 and 201.6 mg m-2 d-1, POC fluxes are 3.8 mgC m-2 d-1 and 3.7 mgC m-2 d-1, and TN fluxes are 0.5 mgN m-2 d-1 and 0.5 mgN m-2 d-1, respectively. The averages of POC, TN content and C/N ratio at 2000 m and 3500 m are 2.5 and 1.8 wt%, 0.3 and 0.2 wt%, and 9.27 and 9.21, separately.
The depths and temporal variability of POC and TN contents respond closely to bio-degradation and dilution by bottom movement at KC station. Comparison with SEATS station (18o15’N, 115o50’E), the variability of POC and TN compositions and their fluxes at KC are lower than SEATS station. The fluxes of KC exhibit intermittent high-value in the summer, and the fluxes of SEATS in the winter are higher than other seasons. For site comparison and global synthesis, an average e-ratio of 0.08 and the b-value of 0.53 are derived. These results should help a better understanding of POC in the world.
目次 Table of Contents
誌謝............................................................................................................I
摘要...........................................................................................................II
Abstract....................................................................................................IV
目錄...........................................................................................................V
表目錄.....................................................................................................VII
圖目錄...................................................................................................VIII
第一章 、緒論..............................................................................................1
1.1碳循環的重要性...........................................................................1
1.2海洋碳循環的作用機制...............................................................3
1.3沉積物收集器的類型...................................................................4
1.4黑潮之概況...................................................................................5
1.5論文目的.......................................................................................8
第二章、材料與方法..................................................................................9
2.1採樣時間、地點及方法...............................................................9
2.2研究方法.....................................................................................10
2.2.1樣品前處理.........................................................................10
2.2.2質量通量的測定.................................................................11
2.2.3總碳、總氮及有機碳測定的前處理...................................12
2.2.3總碳、總氮及有機碳的測定...............................................14
第三章、結果與討論................................................................................16
3.1質量通量之時序變化.................................................................16
3.2各項碳氮元素含量之時序變化.................................................18
3.3各項碳氮通量之時序變化.........................................................20
3.4碳與氮之比值與相關性.............................................................22
3.5黑潮KC站與南海SEATS站沉降顆粒之比較..........................23
3.6碳衰變率與碳衰減值.................................................................26
第四章、結論............................................................................................29
表列..........................................................................................................32
圖列..........................................................................................................41
參考文獻..................................................................................................54
參考文獻 References
中文部分
梁又仁,2008,南海時間序列測站沉降顆粒有機碳、氮及其同位素之時空序列變化。國立中山大學海洋地質及化學研究所碩士論文,共55頁。
許家維,2010,南海時間序列測站沉降通量變化之研究。國立中山大學海洋地質及化學研究所碩士論文,共62頁。
陳鎮東,1994,海洋化學。國立編譯館,共551頁。
鍾宛真,2008,台灣東部黑潮中顆粒性有機碳輸出通量之季節性變化。國立臺灣海洋大學海洋環境化學與生態研究所碩士論文,共56頁。
英文部分
Angel, M. V. (1989), Does mesopelagic biology affect the vertical flux? In: Productivity of Oceans, Past and Present (Dahlem Konferenzen, 1989) [Berger, W.H., Smetacek, V.S., Wefer, G. (Eds.)], Life Science Research Report 44. John Wiley & Sons, New York, 155-173.
Berelson, W. M. (2001), The flux of particulate organic carbon into the ocean interior: a comparison of four U.S. JGOFS regional studies, Oceanography, 14, 59-67.
Buesseler, K. O., A. N. Antia, M. Chen, S. W. Fowler, W. D. Gardner, O. Gustafsson, K. Harada, A. F. Michaels, M. R. van der Loeff, M. Sarin, D. K. Steinberg, and T. Trull (2007a), An assessment of the use of sediment traps for estimating upper ocean particle fluxes, J. Mar. Res., 65, 345-416.
Buesseler, K. O., C. H. Lamborg, P. W. Boyd, P. J. Lam, T. W. Trull, R. R. Bidigare, J. K. B. Bishop, K. L. Casciotti, F. Dehairs, M. Elskens, M. Honda, D. M. Karl, D. A. Siegel, M. W. Silver, D. K. Steinberg, J. Valdes, B. Van Mooy, and S. Wilson (2007b), Revising carbon flux through the ocean’s twilight zone, Science, 316, 567-570.
Chen, C. T. A. (1996a), A mid-depth front separating the South China Sea Water and the Philippine Sea Water, J. Oceanogr., 52, 17-25.
Chen, C. T. A. (1996b), The Kuroshio intermediate water is the major source of nutrients on the East China Sea continental shelf, Oceanol. Acta, 19, 523-527.
Chen, C. T. A. (2008), Distributions of nutrients in the East China Sea and the South China Sea connection, J. Oceanogr., 64, 737-751.
Chen, Y. L. (2005), Spatial and seasonal variation of nitrate-based new production and primary production in the South China Sea, Deep Sea Res. I, 52, 319-340.
Chen, Y. L., H.-Y. Chen, and Y.-H. Lin (2003), Distribution and downward flux of Trichodesmium in the South China Sea as influenced by the transport from the Kuroshio Current, Marine Ecology Progress Series, 259, 47-57.
Chin, W. C., M. V. Orellana, and P. Verdugo (1998), Spontaneous assembly of marine dissolved organic matter into polymer gels, Nature, 391, 568-572.
Chou,W.-C., D. D. Sheu, C. T. A. Chen, L.-S. Wen, Y. Yang, and C.-L. Wei (2007), Transport of the South China Sea subsurface water outflow and its influence on carbon chemistry of Kuroshio waters off southeastern Taiwan, J. Geophys. Res., 112, C12008, doi:10.1029/2007JC004087.
Chu, T. Y. (1976), Study of the Kuroshio current between Taiwan and Ishigakijima, Acta Oceanogr. Taiwan., 6, 1-24.
Copin-Montegut, C., and G. Copin-Montegut (1983), Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter, Deep Sea Res., 30, 31-46.
Druffel, E. R. M., P. M. Williams, J. E. Bauer, and J. R. Ertel (1992), Cycling of dissolved and particulate organic matter in the open ocean, J. Geophys. Res., 97(15), 639-659.
EPICA Community Members (2004), Eight glacial cycles from an Antarctic ice core, Nature, 429, 623-628.
Eppley, R., and B. Peterson (1979), Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282, 677-680.
Feely, R. A., C. L. Sabine, K. Lee, W. Berelson, J. Kleypas, V. J. Fabry, and F. J. Millero (2004), Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans, Science, 305, 362-366.
Gardner, W. D. (1980), Sediment trap dynamics and calibration: A laboratory evaluation, J. Mar. Res., 38, 17-39.
Gardner, W. D., and L. G. Sullivan (1981), Benthic storms: temporal variability in a deep-ocean nepheloid layer, Science, 213, 329-331.
Gong, G.-C., J. Chang, and Y.-H. Wen (1999), Estimation of annual primary production in the Kuroshio waters northeast of Taiwan using a photosynthesis-irradiance model, Deep Sea Res. I, 46, 93-108.
Gordon, D. (1971), Distributions of particulate organic carbon and nitrogen at an oceanic station in the central Pacific, Deep Sea Res., 34, 267-285.
Heinmiller, R. H. (1979), Mooring operations techniques of the buoy project at the Woods Hole Oceanographic Institution, WHOI Technical Reports, Woods Hole Oceanographic Institution, 76-69.
Henrichs, S. M., and S. F. Sugai (1993), Adsorption of amino acids and glucose by sediments of Resurrection Bay, Alaska, USA: Functional group effects, Geochim. Cosmochim. Acta, 57, 823-835.
Honda, M. (2003), Biological pump in Northwestern North Pacific, J. Oceanogr., 59, 671-684.
Honisch, D., N. G. Hemming, D. Archer, M. Siddall, and J. F. McManus (2009), Atmospheric carbon dioxide concentration across the mid-Pleistocene transition, Science, 304, 1551-1553.
Honjo, S. (1997), The Northwestern Pacific Ocean, a crucial ocean to understand global change: rationale for new international collaborative investigations, In: Biogeochemical Processes in the North Pacific [S. Tsunogai (Ed.)]. Japan Marine Science Foundation, Tokyo, 233-248.
Honjo, S., and K.W. Doherty (1988), Large aperture time-series sediment traps; design objectives, construction and application, Deep Sea Res., 35, 133-149.
Honjo, S., S. J. Manganini, R. A. Krishfield, and R. Francois (2008), Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983, Progress in Oceanogr., 76, 217-285.
Hung, C.-C., and G.-C. Gong (2007), Export flux of POC in the main stream of the Kuroshio, Geophys. Res. Lett., 34, L18606, doi:10.1029/2007GL030236.
Hung, C.-C., G.-C. Gong, W.-C. Chung, W.-T. Kuo, and F.-C. Lin (2009), Enhancement of particulate organic carbon export flux induced by atmospheric forcing in the subtropical oligotrophic northwest Pacific Ocean, Mar. Chem., 113, 19-24.
IPCC (2007), Climate Change 2007: The Physical Science Basis. Summary for Policymakers. Contribution of the Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U. K.
Jurg, B. (1996), Towards a new generation of sediment traps and a better measurement/understanding of settling particle flux in lakes and oceans: A hydrodynamical protocol, Aquat. Sci., 58(4), 283-296.
Kepkay, P. E. (1994), Particle aggregation and the biological reactivity of colloids, Mar. Ecol. Prog. Ser., 109, 293-304.
Kikuchi, T., and M. Omori (1985), Vertical distribution and migration of oceanic shrimps at two locations off the Pacific coast of Japan, Deep Sea Res., 32, 837-851.
Lalli, C. M., and T. R. Parsons (1997), Biological Oceanography: An Introduction, 2, Edited, Butterworth-Heinemann, United Kingdom, 20-21.
Lee, C., and C. Cronin (1984), Particulate amino acids in the sea: Effects of primary productivity and biological decomposition, J. Mar. Res., 42, 1075-1097.
Lee, C., S. G. Wakeham, and J. I. Hedges (1988), The measurement of oceanic particle flux-are “swimmer” a problem?, Oceanography, 1, 34-36.
Liang, W.-D., T. Y. Tanga, Y. J. Yang, M. T. Ko, and W.-S. Chuang (2003), Upper-ocean currents around Taiwan, Deep Sea Res. II, 50, 1085-1105.
Liu, C.-T. (1983), As the Kuroshio turns: (I) Characteristics of the current. Acta Oceanogr. Taiwan., 14, 88-95.
Liu, K. K., Y. J. Chen, C. M. Tseng, I. I. Lin, H. B. Liu, and A. Snidvongs (2007), The significance of phytoplankton photo-adaptation and benthic-pelagic coupling to primary production in the South China Sea: Observation and numerical investigations, Deep Sea Res. II, 54, 1546-1574.
Madin, L. P., P. Kremer, P. H. Wiebe, J. E. Purcell, E. H. Horgan, and D. A. Nemazie (2006), Periodic swarms of the salp Salpa aspera in the Slope Water off the NE United States: Biovolume, vertical migration, grazing, and vertical flux, Deep Sea Res. I, 53, 804-819.
Martin, J. H., G. A. Knauer, D. M. Karl, and W. W. Broenkow (1987), VERTEX: Carbon cycling in the northeast Pacific, Deep Sea Res., 18, 1127-1134.
Ning, X., F. Chai, H. Xue, Y. Cai, C. Liu, and J. Shi (2004), Physical- biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea, J. Geophys. Res., 109, C10005, doi:10.1029/2004JC002365.
Nitani, H. (1972), Beginning of the Kuroshio, in: Kuroshio, its physical aspects [H. Stommel and K. Yoshida (Eds.)]. University of Tokyo Press, Tokyo, 129-163.
Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pėpin, C. Ritz, E. Saltzman, and M. Stievenard (1999), Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature, 399, 429-436.
Redfield, A. C., B. H. Ketchum, and F. A. Richards (1963), The influence of organisms on the composition of sea water, In The Sea, 2, Edited by M.N. Hill, Wiely-Interscience, New York, 26-77.
Sabine, C. L., R. A. Feely, N. Gruber, R. M. Key, K. Lee, J. L. Bullister, R. Wanninkhof, C. S. Wong, D. W. R. Wallace, B. Tilbrook, F. J. Millero, T.-H. Peng, A. Kozyr, T. Ono, and A. F. Rios (2004), The oceanic sink for anthropogenic CO2, Science, 305, 367-371.
Sarmiento, J. L., R. Murnane, and C. Lequere (1995), Air-sea CO2 transfer and the carbon budget of the North Atlantic, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 348, 211-219.
Schneider, B., R. Schlitzer, G. Fischer, and E. M. Nothig (2003), Depth-dependent elemental compositions of particulate organic matter (POM) in the ocean, Global Biogeochem. Cycles, 17(2), 1023, doi:10.1029/2002GB001871.
Sheu, D. D., W.-C. Chou, C. T. A. Chen, C.-L. Wei, H.-L. Hsieh, W.-P. Hou, and M. Dai (2009), Riding over the Kuroshio from the South to the East China Sea: Mixing and transport of DIC, Geophys. Res. Lett., 36, L07603, doi:10.1029/2008GL037017.
Siegenthaler, U., and J. L. Samiento (1993), Atmospheric carbon dioxide and the ocean, Nature, 365, 119-125.
Siegenthaler, U., T. F. Stocker, E. Monnin, D. Luthi, J. Schwander, B. Stauffer, D. Raynaud, J.-M. Barnola, H. Fischer, V. Masson-Delmotte, and J. Jouzel (2005), Stable carbon cycle–climate relationship during the last Pleistocene, Science, 310, 1313-1317.
Treguer, P., S. Gueneley, C. Zeyons, J. Morvan, and A. Buma (1990), The distribution of biogenic and lithogenic silica and the composition of particulate organic matter in the Scotia Sea and the Drake Passage during autumn 1987, Deep Sea Res., 37, 851-883.
Tseng, Y.-F., F.-J. Lin, K.-P. Chiang, S.-J. Kao, and F.-K. Shiah (2005), Potential impacts of N2-fixing Trichodesmium on heterotrophic bacterioplankton turnover rates and organic carbon transfer efficiency in the subtropical oligotrophic ocean system, Terr. Atmos. Oceanic Sci., 16, 361-376.
Volk, T., and M. I. Hoffert (1985), Ocean carbon pumps: analysis of relative strength and efficiencies of in ocean-driven circulation atmospheric CO2 changes, In: The Carbon Cycle and Atmospheric CO2: Natural Variation Archean to Present [E.T. Sundquist, W.S. Broecker (Eds.)]. AGU Monograph 32, American Geophysical Union, Washington, DC, 99-110.
Weatherhead, P. J. (1986), How unusual are unusual events? American Naturalist, 128, 150-154.
Wiebe, P. H., L. Madin, L. Haury, G. R. Harbison, and L. Philbin (1979), Diel vertical migration by salpa-aspera and its potential for largescale particulate organic matter transport to the deep-sea, Marine Biology, 53, 249-255.
Yang, Y., and C.-T. Liu (2003), Uncertainty reduction of estimated geostrophic volume transports with altimeter observations east of Taiwan. J. Oceanogr., 59, 251-257.


網站資料
McInnes, L. (2009), Temperature and CO2 records, [http://en.wikipedia.org/wiki/File:Co2-temperature-plot.svg]
National Oceanic and Atmospheric Administration, NOAA (2009), GLOBALVIEW-CO2: Cooperative Atmospheric Data Integration Project-Carbon Dioxide. CD-ROM, NOAA ESRL, Boulder, Colorado [Also available on Internet via anonymous FTP to ftp.cmdl.noaa.gov, Path: ccg/co2/GLOBALVIEW].
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.76.43
論文開放下載的時間是 校外不公開

Your IP address is 3.16.76.43
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code