Responsive image
博碩士論文 etd-0902110-134159 詳細資訊
Title page for etd-0902110-134159
論文名稱
Title
壓電致動四連桿拍翅機構設計與分析
Design and Analysis of a Piezoelectrically Actuated Four-Bar Flapping Mechanism
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-08-30
繳交日期
Date of Submission
2010-09-02
關鍵字
Keywords
翅痣、微飛行器、拍翅、壓電致動器
Pterostigma, MAV, Flapping Wing, PZT Actuator
統計
Statistics
本論文已被瀏覽 5637 次,被下載 0
The thesis/dissertation has been browsed 5637 times, has been downloaded 0 times.
中文摘要
本研究是以壓電陶瓷PZT雙層薄片型致動器作為拍翅式微飛行器(Flapping Micro Air Vehicle)的致動源,設計一個以模仿拍翼飛行生物為基礎之壓電致動拍翅機構(Flapping Mechanism),並且利用簡易的升力量測裝置量測各種不同參數的翅膀所產生的升力值。進一步分析探討不同的翅膀形態對於微拍翅機構所產生之升力的影響。
首先我們在前言中探討文獻裡各種拍翅機構之優缺點,並依照實驗要求設計微飛行器之傳動機構;再利用複合材料製成之撓性接頭特性完成拍翅機構及機身的實作。最後驅動PZT致動器觀察其拍翅效果,並討論製作微型拍翅機構的要點及改良過程,然後再搭配各種不同勁度的翅膀配合適當比重的翅痣,歸納出拍翼攻角(angle of attack)、撲翼頻率(wing beat frequency)、翅痣(pterostigma)等相關參數與升力及推進力之間的關係。對日後研究分析壓電拍翅機構與翅膀之設計製作提供了可行參考的方法及分析。
Abstract
none
目次 Table of Contents
目錄...........................................................................I
表目錄.....................................................................III
圖目錄 ....................................................................IV
符號說明.................................................................VI
摘要........................................................................VII
第一章 緒論 .............................................................1
1. 1 研究動機 ..........................................................2
1. 2 研究背景與文獻回顧 ......................................3
1. 2. 1 研究背景 ......................................................3
1. 2. 2 參考文獻 ......................................................8
1. 3 拍翅飛行原理簡介...........................................9
1. 3. 1 飛行狀態區間 .............................................9
1. 3. 2 拍翅種類及基本原理 ...............................10
1. 3. 3 翅痣對飛行的影響....................................13
1. 4 本文研究基本架構........................................14
第二章 致動器的選擇與驅動設備.......................16
2. 1 致動器的選擇和評估 ...................................16
2. 2 PZT壓電陶瓷致動器之基本原理 ...............19
2. 2. 1 壓電材料基本介紹 ..................................19
2. 2. 2 壓電陶瓷致動器之型態及構造特性.......21
2. 3 PZT致動器固定以及電源訊號輸入方式 ...24
2. 4 壓電致動器驅動儀器設備與實驗系統 ......25
2. 5 本章小節.......................................... ............27
第三章 振翅模型之基本設計與改良.................28
3. 1 放大機構的選擇和評估 .............................28
3. 2 撓性接頭.......................................... ...........32
3. 2. 1 撓性接頭基本介紹 ................................ 33
3. 2. 2 傳統撓性接頭結構之討論..................... 34
3. 3 壓電致動拍翼式機構之實作...................... 35
3. 3. 1 放大機構實作..........................................35
3. 3. 2 機身結構製作..........................................36
3. 3. 3 翅膀的參數設定與製作 ........................ 37
3. 4 位移放大機構之放大效果..........................41
3. 5 拍翅機構的改良..........................................42
3. 6本章小結與製作建議 ..................................47
第四章 升推力量測實驗方法與結果討論.........49
4. 1 拍翅空氣動力學的基本理論...................... 49
4. 2 升力實驗之規劃與設計...............................53
4. 2. 1 升力量測裝置.......................................... 53
4. 2. 2 升力量測之計算.......................................55
4. 2. 3 升力實驗步驟與流程 ..............................56
4. 3 振翅頻率對升力之影響 ..............................57
4. 4 翅膀結構與翅痣對升力之影響 ..................62
4. 5 推力量測實驗方法與流程...........................69
4. 5. 1 推力實驗裝置設計與數值計算 ..............69
4. 5. 2 推力裝置實作與配置 ..............................70
4. 5. 3 推力實驗步驟與流程 ..............................71
4. 6 推力量測實驗之結果與討論.......................72
4. 7 小結...............................................................77
第五章 結論與建議..............................................78
參考文獻...............................................................81

參考文獻 References
Agrawal, S. K. and Z. A. Khan. 2007. Design and Optimization of a Biologically Inspired Flapping Mechanism for Flapping Wing Micro Air Vehicles. IEEE International Conference on Robotics and Automation 10-14.

Agrawal, S. K., R. Madangopal and Z. A. Khan. 2005. Biologically Inspired Design Of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms And Quasi-steady Aerodynamics. Journal of Mechanical Design 127:809-816.

Chang, C. T., M. H. Wu, M. H. Li, M. C. Shih and K. J. Chi. 2010. The Effects of Pterostigma on the Vibration Characteristics of Flapping Wings in Dragonflies. Taiwan-Argonne Workshop on Nano-structured Materials..

Conn, A., S. Burgess, R. Hyde and C. S. Ling. 2006. From Natural Flyers to the Mechanical Realization of a Flapping Wing Micro Air Vehicle. IEEE International Conference on Robotics and Biomimetics 439-444.

Dalton, S. 1999. The Miracle of Flight. Tokyo: Big Apple Tuttle-Mori Agency.

Fenelon, M. A. A. 2008. Biomimetic Flapping Wing Aerial Vehicle. IEEE International Conference on Robotics and Biomimetics 1053-1058.

Fenelon, M. A. A. and T. Furukawa. 2010. Design of an Active Flapping Wing Mechanism and a Micro Aerial Vehicle Using a Rotary Actuator. Mechanism and Machine Theory 45(2):137-146.

Finio, B. M., B. Eum, C. Oland and R. J. Wood. 2009. Asymmetric Flapping for a Robotic Fly Using a Hybrid Power-control Actuator. IEEE/RSJ International Conference on Intelligent Robots and Systems 15:2755 – 2762.

Karpelson, M.,G. Y. Wei and R. J. Wood. 2008. A Review of Actuation and Power Electronics Options for Flapping-Wing Robotic Insects. IEEE International Conference on Robotics and Automation 13: 779-786.

Lin, C. S., C. B. Hwu, and W.B. Young. 2006. The Thrust and Lift of an Ornithopter’s Membrane Wings with Simple Flapping Motion. Aerospace Science and Technology 10:111-119.

Ma, Woburn. 2004. PIEZO SYSTEMS. http://www.piezo.com/.

Madangopal, R., Z. A. Khan. and S. K. Agrawal. 2005. Biologically Inspired Design Of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms And Quasi-steady Aerodynamics. ASME Journal of Mechanical Design 27(4):809-817.

Madangopal, R., Z. A. Khan. and S. K. Agrawal. 2006. Energetics-Based Design of Small Flapping-Wing Micro Air Vehicles. IEEE/ASME Transaction on Mechatronic 11(4): 433-438.

McIntosh, S. H. , S. K. Agrawal, and Z. Khan. 2006. Design of a Mechanism for Biaxial Rotation of a Wing for a Hovering Vehicle. IEEE/ASME Transaction on Mechatronic 11(2): 145-153.

Maxworthy, T. 1979. Experiments on the Weis-Fogh Mechanisms of Lift Generation by Insects in Hovering Flight. Part 1. Dynamics of the Fling. J. Fluid Mechanisms 93:47-63.

Norberg, R. A. 1972. The Pterostigma of Insect Wings an Inertial Regulator of Wing Pitch. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 81:9-22.

Park, H. C., M. Syaifuddin and N. S. Goo. 2006. An Insect-Mimicking Flapping System Actuated by A Piezoceramic Actuator. IEEE International Conference on Robotics and Biomimetics 2:451-456.
Park, H. C., J. H. Park and K. J. Yoon. 2007. Development of Bio-mimetic Composite Wing Structures and Experimental Study on Flapping Characteristics. IEEE International Conference on Robotics and Biomimetics 16: 25 - 30.

Pornsin-siriraka, T. N., Y. C. Taia, H. Nassef and C. M. HobTai. 2001. Titanium-alloy MEMS Wing Technology for a Micro Aerial Vehicle Application. Sensors and Actuators A 89: 95-103.

Sitti, M. 2003. Piezoelectrically Actuated Four-Bar Mechanism With Two Flexible Links for Micromechanical Flying Insect Thorax. IEEE/ASME Transaction on Mechatronics 8(1): 26-36.

Steltz, E., S. Avadhanula, and R. S. Fearing. 2007. High Lift Force with 275 Hz Wing Beat in MFI. IEEE/RSJ International Conference on Intelligent Robots and Systems 10: 3987-3992.

Suzuki, K., I. Shimoyama, and H. Miura. 1994. Insect-Model Based Microrobot with Elastic Hinges. Journal of Microelectromechanical Systems 3(1): 4-9.

Syaifuddin, M. , H. C. Park and N. S. Goo. 2006. Design and Evaluation of a LIPCA-actuated Flapping Device. Smart Materials and Structures 15: 1225–1230.

Tai, Y. C. and C. M. Ho. 2000. MEMS Wing Technology for A Battery-Powered Ornithopter. The 13th IEEE Annual International Conference on MEMS 06:799-804.

Weis-Fogh, T. 1973. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. Journal of Experimental Biology 59: 169-230.

Wood, R. J. 2007. Liftoff of a 60mg Flapping-wing MAV. IEEE/RSJ International Conference on Intelligent Robots and System 10: 1889-1894.


Wood, R. J., S. Avadhanula, R. Sahai, E. Steltz, and R. S. Fearing. 2008. Microrobot Design Using Fiber Reinforced Composites. Journal of Mechanical Design .

Wood, R. J. 2008. The First Takeoff of a Biologically Inspired At-Scale Robotic Insect. IEEE Transactions on Robotics 24(2):341-347.

路非遙,2001,振動翼微型飛行載具之空氣動力特性測試與分析,國立成功大學航空太空工程學系碩士論文,台南,台灣。

高鴻,2005,平板多層翼微飛行器之機翼最佳交錯配置實驗研究,國立成功大學航空太空工程學系在職專班碩士論文,台南,台灣。

許溢适,1996,壓電/電歪致動器,文笙書局,台灣。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.228.88
論文開放下載的時間是 校外不公開

Your IP address is 18.191.228.88
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code