Responsive image
博碩士論文 etd-0902110-152900 詳細資訊
Title page for etd-0902110-152900
論文名稱
Title
砷化銦鎵假晶式高電子遷移率電晶體之特性分析:RF I-V曲線與高頻非線性模型建立
Investigation on Device Characteristics of the InGaAs Pseudomorphic High Electron Mobility Transistors:RF I-V Curves and High Frequency Nonlinear Models Establishment
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-02
繳交日期
Date of Submission
2010-09-02
關鍵字
Keywords
高頻非線性模型、高頻非線性特性、射頻電流-電壓曲線、小訊號模型、假晶式高電子遷移率電晶體
High Frequency Nonlinear Characteristics, Pseudomorphic High Electron Mobility Transistor, Small Signal Models, High Frequency Nonlinear Models, RF I-V Curves
統計
Statistics
本論文已被瀏覽 5657 次,被下載 8
The thesis/dissertation has been browsed 5657 times, has been downloaded 8 times.
中文摘要
本論文將針對電晶體之高頻特性與大訊號操作下之非線性現象進行分析與探討。鑒於III-V族化合物半導體所具備之良好高頻特性,及其應用於高頻電路設計之優勢,本研究之待測元件採用0.15μm砷化銦鎵製程之假晶式高電子遷移率電晶體,由穩懋半導體公司提供。首先,以高頻量測萃取電晶體小訊號模型之各元件參數值,再進一步將各偏壓下之等效模型完整建立。根據內質元件物理意義及其與輸出電流之關係,將萃取之gm與gds透過積分與數學推導過程,建立電晶體之射頻電流-電壓曲線RF I-V,藉此完整的描述電晶體於高頻操作之輸出特性。
電晶體之非線性特性可歸因於非線性輸入電容Cgs與Cgd,以及非線性相依電流源所造成。本論文建立之高頻非線性模型以傳統Angelov模型為基礎,並且結合論文中提出之RF I-V與高頻量測所萃取之電晶體內質參數,將各非線性源於高頻操作之特性透過擬合的方式,以非線性方程式表達。藉此將電晶體之輸出特性完整的模型化,有效改善傳統非線性模型於高頻之應用。
再者,透過實驗數據以及模擬結果驗證模型之準確性。本論文建立之小訊號模型與高頻非線性模型皆與實驗結果有極佳的吻合度,較傳統非線性模型更準確表達電晶體輸出特性,成功的將高頻效應與非線性特性整合於模型中。
Abstract
In this thesis, the investigation focuses on the analysis of the high frequency characteristics and the nonlinearity of the transistors. In view of the III-V semiconductors which have excellent high frequency performance and the advantage for high frequency circuit design, the 0.15μm InGaAs based pseudomorphic high electron mobility transistors provided by WIN semiconductor Corp. were used in this study. The high frequency measurement was utilized to extract both extrinsic and intrinsic components of the transistors, and further to establish the small signal equivalent model in each bias condition. According to the physical definition of the extracted gm, gds and the relationship with the output current, RF I-V curves could be determined through the integration procedure.
The nonlinearity of the transistors can be attributed to the nonlinear input capacitance Cgs and Cgd, and the voltage dependent current source. The high frequency nonlinear models proposed in this thesis were based on classic Angelov model. For the high frequency application, the frequency dependent characteristics of the nonlinear sources would be taken into consideration through the combination of the RF I-V curves and extracted intrinsic components. Thus, the nonlinearities could be able to describe by nonlinear function through the fitting process and model the output performance completely.
The accuracy of the models could be confirmed through the comparison between the simulation and the measurement result. Obviously, the high frequency models which include the high frequency effect and the nonlinear characteristics have excellent agreement with the experimental data.
目次 Table of Contents
目錄 I
圖目錄 III
表目錄 VI
第一章 緒論 1
1.1 研究動機 1
1.2 發展概述 2
1.3 論文架構 3
第二章 pHEMT特性分析與量測系統、去嵌化技術介紹 5
2.1 簡介 5
2.2 電晶體物理結構與特性 5
2.3 量測系統 9
2.3.1待測電晶體規格 9
2.3.2直流量測 11
2.3.3高頻小訊號量測 12
2.3.4高頻功率量測 14
2.3.5負載拉移量測 17
2.4 去嵌化技術 18
2.5 負載拉移量測原理 21
2.6 主動元件非線性特性 22
2.6.1 諧波失真(Harmonic Distortion) 22
2.6.2 1dB增益壓縮點 (1dB Compression Point;P1dB) 22
2.6.3 交互調變失真(Intermodulation Distortion;IMD) 24
2.6.4 三階截距點 (Third-Order Intercept Point;OIP3) 25
第三章 pHEMT小訊號模型之建立 27
3.1 簡介 27
3.2 小訊號等效模型架構分析 27
3.3 外質參數萃取 30
3.4 內質參數萃取 33
3.5 pHEMT小訊號模型驗證與分析 37
3.5.1 閘極寬度75μm之pHEMT小訊號模型建立與驗證 45
3.5.2 閘極寬度50μm之pHEMT小訊號模型建立與驗證 47
第四章 pHEMT高頻非線性模型與RF I-V之建立與驗證 49
4.1 簡介 49
4.2 RF-IV之建立與分析 49
4.3 高頻非線性模型介紹 57
4.4 高頻非線性模型之建立與分析 58
4.4.1 閘極寬度75μm之pHEMT高頻非線性模型建立與驗證 70
4.4.2 閘極寬度50μm之pHEMT高頻非線性模型建立與驗證 76
第五章 結論 82
參考文獻 83
參考文獻 References
[1] W. R. Curtice, “A MESFET model for use in the design of GaAs integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 28, no. 5, pp. 448-456, 1980.

[2] W. R. Curtice and M. Ettenberg, “A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 33, pp. 1383-1394, 1985.

[3] A. Materka and T. Kacprzak, “Computer calculation of large-signal GaAs FET amplifier characteristics,” IEEE Trans. Microwave Theory Tech., vol. 33, pp. 129-135, 1985.

[4] Y. Tajima, B. Wrona, and K. Mishima, “GaAs FET large-signal model and its application to circuit designs,” IEEE Trans. Electron Dev., vol. 28, pp. 171-175, 1981.

[5] A. J. McCamant, G. D. McCormack, and D. H. Smith, “An improved GaAs MESFET model for SPICE,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 822-824, 1990.

[6] I. Angelov, H. Zirath, and N. Rosman, “A new empirical nonlinear model for HEMT and MESFET devices,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2258-2266, 1992.

[7] Fazal Ali, Aditya Gupta, HEMTs and HBTs: Devices, Fabrication and Circuits, Artech House, 1991.

[8] A. Ketterson, W. T. Masselink, J. S. Gedymin, J. Klem, W. Kopp, H. Morkoc, and K. R. Gleason, “Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field effect transistors,” IEEE Trans. Electron Dev., vol. 33, pp. 564-571, 1986.

[9] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multi-layers,” I. Misfit dislocations, J. Crystal Grow., vol. 27, p. 118, 1974.

[10] J. M. Ballingall, P. Ho, G. J. Tessmer, P. A. Martin, N. Liewis, and E. L. Hall, “Novel pseudomorphic high electron mobility transistor structures with GaAs-In0.3Ga0.7As thinstrained superlattice active layers,” App. Phys. Lett., vol. 54, p. 2121, 1989.

[11] M. C. A. M. Koolen, J. A. M. Geelen, and M. P. J. G. Versleijen, “An improved de-embedding technique for on-wafer high-frequency characterization,” in Bipolar Circuits and Technology Meeting, Proceedings of the 1991, pp. 188-191, 1991.

[12] S. C. Cripps, RF Power Amplifier for Wireless Communications, Artech House, 1999.

[13] D. M. Pozar, Microwave Engineering, 3rd ed., New York: Wiley, 2005.

[14] M.-Y. Jeon, B.-G. Kim, Y.-J. Jeon, and Y.-H. Jeong, “A Technique for extracting small-signal equivalent-circuit elements of HEMTs,” IEICE trans. electronics, vol. 82, pp. 1968-1976, 1999.

[15] P. Andreas, G. Markus, and W. Dirk, “Small-signal and temperature noise model for MOSFETs,” IEEE Trans. Microwave Theory Tech., pp.1927-1934, 2002.

[16] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1151-1159, 1988.

[17] M. Berroth and R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 891-895, 1990.

[18] O. T. Hausmi Yumiko, Matsunaga Nobutoshi, Kodera Hiroshi, “Analysis of the frequency dispersion of transconductance and drain-conductance in GaAs MESFETs,” IEICE Trans. Electronics (Japanese Edition), vol. J88-C, pp. 321-328, 2005.

[19] Y. Ohno, P. Francis, M. Nogome, and Y. Takahashi, “Surface-states effects on GaAs FET electrical performance,” IEEE Trans. Electron Dev., vol. 46, pp. 214-219, 1999.

[20] J. M. O'Callaghan and J. B. Beyer, “A large signal nonlinear MODFET model from small signal s-parameters,” in IEEE MTT-S Microwave Symp. Dig., vol. 1, pp. 347-350, 1989.

[21] C. I. Lee, and W. C. Lin, Y. T. Lee and Y. T. Lin “The RF I-V Curve for PHEMT through the Small Signal S-parameter Extraction Method,” PIERS Proceedings, pp. 381-384, July 5-8, Cambridge, USA 2010.

[22] C. C. Meng and G. H. Huang, “High frequency" I-V curves for GaAs MESFETs through unique determination of small signal circuit parameters at multiple bias points,” in Asia-Pacific Microwave Conf. 2001, vol.2 , pp. 709-711, 2001.

[23] Y. Hasumi, N. Matsunaga, T. Oshima, and H. Kodera, “Characterization of the frequency dispersion of transconductance and drain conductance of GaAs MESFET,” IEEE Trans. Electron Dev., vol. 50, pp. 2032-2038, 2003.

[24] L. Shih-Hsien and L. Chien-Ping, “Numerical analysis of frequency dispersion of transconductance in GaAs MESFETs,” IEEE Trans. Electron Dev., vol. 43, pp. 213-219, 1996.

[25] S. M. Sze, Semiconductor Devices Physics and Technology 2nd Edition, John Wiley, 2002.

[26] I. Angelov and H. Zirath, “A New empirical nonlinear model for HEMT devices,” Electronics Lett., vol. 28, pp. 140-142, Dec.1992.

[27] I. Angelov, L. Bengtsson, and M. Garcia, “Extensions of the Chalmers nonlinear HEMT and MESFET model,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1664-1674, Oct. 1996.

[28] I. Angelov, L. Bengtsson, and M. Garcia, “Extensions of the Chalmers nonlinear HEMT and MESFET model,” Microwave Theory and Tech., IEEE Trans., vol. 44, pp. 1664-1674, 1996.

[29] I. Angelov, N. Rorsman, J. Stenarson, M. Garcia, and H. Zirath, “An empirical table-based FET model,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2350-2357, Dec. 1999.

[30] Agilent-ADS Angelov Model Menu.

[31] C. Blanco, “Gain expansion and intermodulation in a MESFET amplifier,” Electronics Lett., vol. 15, pp. 31-32, 1979.

[32] N. B. De Carvalho and J. C. Pedro, “Multitone frequency-domain simulation of nonlinear circuits in large- and small-signal regimes,” IEEE Trans., Microwave Theory Tech., vol. 46, pp. 2016-2024, 1998.

[33] N. B. De Carvalho and J. C. Pedro, “Large- and small-signal IMD behavior of microwave power amplifiers,” IEEE Trans., Microwave Theory Tech., vol. 47, pp. 2364-2374, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.206.13.112
論文開放下載的時間是 校外不公開

Your IP address is 18.206.13.112
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code