Responsive image
博碩士論文 etd-0902110-155826 詳細資訊
Title page for etd-0902110-155826
論文名稱
Title
肝癌衍生生長因子於口腔癌之表現與預後
The Expression and Prognostic Role of Hepatoma-Derived Growth Factor in Oral Cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
46
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-11
繳交日期
Date of Submission
2010-09-02
關鍵字
Keywords
血管內皮生長因子、肝癌衍生生長因子、口腔癌、預後
VEGF, HDGF, oral cancer, prognosis
統計
Statistics
本論文已被瀏覽 5749 次,被下載 784
The thesis/dissertation has been browsed 5749 times, has been downloaded 784 times.
中文摘要
中文摘要
研究目的:
Hepatoma-derived growth factor (HDGF) 是一種獨特的核內生長因子在癌症的形成與發展有著相當重要的角色。這個研究是要來闡明HDGF在口腔癌上表現與臨床病理學的特徵來做分析跟比較。
材料與方法:
我們回朔性收集95位口腔鱗狀上皮癌病人,利用開刀後的檢體做成組織微陣列的標本,再利用組織免疫化學染色法來看HDGF還有血管內皮生長因子 (vascular endothelial growth factor, VEGF)的表現強弱。我們紀錄HDGF及 VEGF的表現並與臨床病理學的特徵進行統計學上的分析
結果:
不論是在口腔癌細胞的細胞核還是細胞質皆可以看到HDGF的表現。在細胞核中的高度表現的HDGF跟口腔腫瘤大小(T stage, P=0.004) 及組織分化程度(histological grade, P=0.013)都有統計學上的意義。在細胞質中的高度表現的HDGF僅跟腫瘤壞死(tumor necrosis, P=0.002)有關. VEGF跟頸部淋巴轉移有相關性(P=0.0021),同時也跟在核中表現的HDGF有關(P=0.0006)。在單變相分析中, 細胞核高度表現之HDGF及高度表現的VEGF跟疾病相關存活、無轉移存活、無局部復發存活有相關性. 在多變相分析中有進一步看出在細胞核中的高度表現的HDGF在疾病相關存活及無局部復發存活是獨立重要的預後因子(P=0.028; P=0.0285)。同時過度表現的VEGF在疾病相關存活、無轉移存活、無局部復發存活上也是獨立的預後因子(P=0.0183; P=0.0461; P=0.0153)
結論:
在這一研究中可以發現在口腔癌的病人有著較高表現的HDGF及VEGF代表著較具侵襲性的腫瘤表現及較差的預後。
Abstract
Abstract
PURPOSE: Hepatoma-derived growth factor (HDGF) is a unique nuclear/growth factor and plays an important role in the development and progression of cancer. The current study aimed to elucidate the correlation between HDGF expression, clinic-pathologic parameters, and associated molecular factors of oral cancer.
MATERIALS AND METHODS: The surgically resected samples from a total of 95 patients with oral cancer (squamous cell carcinoma) were enrolled to construct the tissues microarray (TMA) in this retrospective study. The HDGF expression in TMA of oral cancer was determined by immunohistochemistry. HDGF and vascular endothelial growth factor (VEGF) immunostaining in tumor samples was scored and the labeling index were correlated with various clinic-pathologic parameters by statistic analysis.
RESULTS: Expression of nuclear HDGF and VEGF was highly correlated with primary T stage (P=0.004 and P=0.038, respectively) and histological grade (P=0.013 and P=0.017, respectively). VEGF expression also associated with nodal status (P=0.021). Moreover, expression of nuclear HDGF and VEGF were highly correlated to each other (P=0.006). On the other hand, expression of HDGF in cytoplasm only associated with tumor necrosis (P=0.002) and showed no impact on survival. In univariate analysis, high expression of nuclear HDGF and VEGF significantly affected disease-specific, metastasis-free, and local recurrence-free survival. Multivariate analysis also indicated that expression level of nuclear HDGF is an independent prognostic factor for disease-specific and local recurrence-free survival (P=0.028; P=0.0285). Indeed, high expression of VEGF is also an independent factor in disease-specific, local recurrence-free, and metastasis free survival (P=0.0183; P=0.0461; P=0.0153).
CONCLUSION: The data showed that high expression of nuclear HDGF and VEGF in squamous cell carcinoma of oral cavity might identify patients at risk of aggressive disease and predict poor prognosis. HDGF might play as key of regulation of tumorigenesis. Therefore, HDGF could be a candidate gene for the development of diagnostic and therapeutic strategies for oral cancer. Further studies are still need to determine the precise role of HDGF in the biological behavior of oral caner and the regulatory mechanism with other associated molecular factors.
目次 Table of Contents
Abstract 1
English abstract 1
Chinese abstract 3
Introduction 4
Materials and Methods 7
Study population 7
Treatment and follow-up 7
Histopathological examination 9
Construction of tissue microarray (TMA) block 9
Immunohistochemistry (IHC) 10
Immunohistochemical Assessment 11
Statistical analysis 11
Results 13
Characteristics of the oral cancer patients 13
The expression of HDGF and VEGF in oral cancer cell 13
Correlation analysis of HDGF/VEGF and clinicopathological parameter 14
Univariate log-rank analyses of survival---high expression of HDGF and VEGF 15
Multivariate analyses of survival---high expression of HDGF and VEGF 15
Discussion 17
Survival of oral cancer 17
The transporting pathway of HDGF 18
The role of HDGF and VEGF in oral cancer 20
Angiogenesis---the interaction of HDGF and VEGF 23
Conclusion 25
Tables 26
Figures 31
References 40
參考文獻 References
References
1. Funk GF, Karnell LH, Robinson RA, Zhen WK, Trask DK, Hoffman HT. Presentation, treatment, and outcome of oral cavity cancer: a National Cancer Data Base report. Head & neck 2002;24:165-80.
2. 2007 statistics of causes of death. 2009. (Accessed at http://www.doh.gov.tw/statistic/index.htm.)
3. Chu PC, Hwang JS, Wang JD, Chang YY. Estimation of the financial burden to the National Health Insurance for patients with major cancers in Taiwan. J Formos Med Assoc 2008;107:54-63.
4. Wan WH, Fortuna MB, Furmanski P. A rapid and efficient method for testing immunohistochemical reactivity of monoclonal antibodies against multiple tissue samples simultaneously. J Immunol Methods 1987;103:121-9.
5. Chung CH, Bernard PS, Perou CM. Molecular portraits and the family tree of cancer. Nature genetics 2002;32 Suppl:533-40.
6. Giltnane JM, Rimm DL. Technology insight: Identification of biomarkers with tissue microarray technology. Nat Clin Pract Oncol 2004;1:104-11.
7. Sasaki H, Hoshi H, Hong YM, et al. Purification of acidic fibroblast growth factor from bovine heart and its localization in the cardiac myocytes. The Journal of biological chemistry 1989;264:17606-12.
8. Nakamura H, Izumoto Y, Kambe H, et al. Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. The Journal of biological chemistry 1994;269:25143-9.
9. Everett AD, Stoops T, McNamara CA. Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. The Journal of biological chemistry 2001;276:37564-8.
10. Yang J, Everett AD. Hepatoma-derived growth factor binds DNA through the N-terminal PWWP domain. BMC molecular biology 2007;8:101.
11. Qiu C, Sawada K, Zhang X, Cheng X. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol 2002;9:217-24.
12. Stec I, Nagl SB, van Ommen GJ, den Dunnen JT. The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS letters 2000;473:1-5.
13. Yang J, Everett AD. Hepatoma-derived Growth Factor Represses SET and MYND Domain Containing 1 Gene Expression through Interaction with C-terminal Binding Protein. Journal of molecular biology 2009.
14. Kishima Y, Yamamoto H, Izumoto Y, et al. Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals. The Journal of biological chemistry 2002;277:10315-22.
15. Abouzied MM, El-Tahir HM, Prenner L, Haberlein H, Gieselmann V, Franken S. Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. The Journal of biological chemistry 2005;280:10945-54.
16. Enomoto H, Yoshida K, Kishima Y, et al. Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology (Baltimore, Md 2002;36:1519-27.
17. Cilley RE, Zgleszewski SE, Chinoy MR. Fetal lung development: airway pressure enhances the expression of developmental genes. Journal of pediatric surgery 2000;35:113-8; discussion 9.
18. Everett AD. Identification, cloning, and developmental expression of hepatoma-derived growth factor in the developing rat heart. Dev Dyn 2001;222:450-8.
19. Everett AD, Lobe DR, Matsumura ME, Nakamura H, McNamara CA. Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development. The Journal of clinical investigation 2000;105:567-75.
20. Oliver JA, Al-Awqati Q. An endothelial growth factor involved in rat renal development. The Journal of clinical investigation 1998;102:1208-19.
21. Hu TH, Huang CC, Liu LF, et al. Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 2003;98:1444-56.
22. Yoshida K, Tomita Y, Okuda Y, et al. Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. Ann Surg Oncol 2006;13:159-67.
23. Ren H, Tang X, Lee JJ, et al. Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol 2004;22:3230-7.
24. Yamamoto S, Tomita Y, Hoshida Y, et al. Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res 2006;12:117-22.
25. Matsuyama A, Inoue H, Shibuta K, et al. Hepatoma-derived growth factor is associated with reduced sensitivity to irradiation in esophageal cancer. Cancer research 2001;61:5714-7.
26. Yamamoto S, Tomita Y, Hoshida Y, et al. Expression Level of Hepatoma-Derived Growth Factor Correlates with Tumor Recurrence of Esophageal Carcinoma. Ann Surg Oncol 2007.
27. Tsai C, Sr., Tai M, Hu T, et al. Expression of hepatoma-derived growth factor in early-stage cervical adenocarcinoma. J Clin Oncol (Meeting Abstracts) 2007;25:16002-.
28. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995;1:27-31.
29. Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 1989;161:851-8.
30. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989;246:1309-12.
31. Okuda Y, Nakamura H, Yoshida K, et al. Hepatoma-derived growth factor induces tumorigenesis in vivo through both direct angiogenic activity and induction of vascular endothelial growth factor. Cancer science 2003;94:1034-41.
32. Everett AD, Narron JV, Stoops T, Nakamura H, Tucker A. Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor. American journal of physiology 2004;286:L1194-201.
33. Li CF, Huang WW, Wu JM, et al. Heat shock protein 90 overexpression independently predicts inferior disease-free survival with differential expression of the alpha and beta isoforms in gastrointestinal stromal tumors. Clin Cancer Res 2008;14:7822-31.
34. Li SH, Li CF, Sung MT, et al. Skp2 is an independent prognosticator of gallbladder carcinoma among p27(Kip1)-interacting cell cycle regulators: an immunohistochemical study of 62 cases by tissue microarray. Mod Pathol 2007;20:497-507.
35. Cancer statistics. American Cancer Society, 2008. (Accessed at www.cancer.org.)
36. Platz H, Fries R, Hudec M. Retrospective DOSAK Study on carcinomas of the oral cavity: results and consequences. Journal of maxillofacial surgery 1985;13:147-53.
37. Tankere F, Camproux A, Barry B, Guedon C, Depondt J, Gehanno P. Prognostic value of lymph node involvement in oral cancers: a study of 137 cases. The Laryngoscope 2000;110:2061-5.
38. Woolgar JA, Rogers S, West CR, Errington RD, Brown JS, Vaughan ED. Survival and patterns of recurrence in 200 oral cancer patients treated by radical surgery and neck dissection. Oral oncology 1999;35:257-65.
39. Shingaki S, Nomura T, Takada M, Kobayashi T, Suzuki I, Nakajima T. The impact of extranodal spread of lymph node metastases in patients with oral cancer. International journal of oral and maxillofacial surgery 1999;28:279-84.
40. Winquist E, Oliver T, Gilbert R. Postoperative chemoradiotherapy for advanced squamous cell carcinoma of the head and neck: a systematic review with meta-analysis. Head & neck 2007;29:38-46.
41. Bernier J, Domenge C, Ozsahin M, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. The New England journal of medicine 2004;350:1945-52.
42. Cooper JS, Pajak TF, Forastiere AA, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. The New England journal of medicine 2004;350:1937-44.
43. Zhou Z, Yamamoto Y, Sugai F, et al. Hepatoma-derived growth factor is a neurotrophic factor harbored in the nucleus. The Journal of biological chemistry 2004;279:27320-6.
44. 廖方瑜. 肝癌衍生生長因子之PWWP/HATH作用區進入細胞的機制探討: 清華大學; 2006.
45. Tsang TY, Tang WY, Tsang WP, Co NN, Kong SK, Kwok TT. Downregulation of hepatoma-derived growth factor activates the Bad-mediated apoptotic pathway in human cancer cells. Apoptosis 2008;13:1135-47.
46. Clermont F, Gonzalez NS, Communi D, Franken S, Dumont JE, Robaye B. HDGF is dephosphorylated during the early steps of endothelial cell apoptosis in a caspase-dependent way. Journal of cellular biochemistry 2008;104:1161-71.
47. Lippman SM, Sudbo J, Hong WK. Oral Cancer Prevention and the Evolution of Molecular-Targeted Drug Development. J Clin Oncol 2005;23:346-56.
48. Shin DM, Charuruks N, Lippman SM, et al. p53 Protein Accumulation and Genomic Instability in Head and Neck Multistep Tumorigenesis. Cancer Epidemiol Biomarkers Prev 2001;10:603-9.
49. Marubuchi S, Okuda T, Tagawa K, et al. Hepatoma-derived growth factor, a new trophic factor for motor neurons, is up-regulated in the spinal cord of PQBP-1 transgenic mice before onset of degeneration. Journal of neurochemistry 2006;99:70-83.
50. Brandwein-Gensler M, Teixeira MS, Lewis CM, et al. Oral squamous cell carcinoma: histologic risk assessment, but not margin status, is strongly predictive of local disease-free and overall survival. The American journal of surgical pathology 2005;29:167-78.
51. Kademani D, Bell RB, Bagheri S, et al. Prognostic factors in intraoral squamous cell carcinoma: the influence of histologic grade. J Oral Maxillofac Surg 2005;63:1599-605.
52. Hiratsuka H, Miyakawa A, Nakamori K, Kido Y, Sunakawa H, Kohama G. Multivariate analysis of occult lymph node metastasis as a prognostic indicator for patients with squamous cell carcinoma of the oral cavity. Cancer 1997;80:351-6.
53. Liao CT, Chang JT, Wang HM, et al. Analysis of risk factors of predictive local tumor control in oral cavity cancer. Annals of surgical oncology 2008;15:915-22.
54. Lepourcelet M, Tou L, Cai L, et al. Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF). Development (Cambridge, England) 2005;132:415-27.
55. Gottlieb PD, Pierce SA, Sims RJ, et al. Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nature genetics 2002;31:25-32.
56. Tan X, Rotllant J, Li H, De Deyne P, Du SJ. SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proceedings of the National Academy of Sciences of the United States of America 2006;103:2713-8.
57. Tse GM, Chan AW, Yu KH, et al. Strong immunohistochemical expression of vascular endothelial growth factor predicts overall survival in head and neck squamous cell carcinoma. Ann Surg Oncol 2007;14:3558-65.
58. Johnstone S, Logan RM. Expression of vascular endothelial growth factor (VEGF) in normal oral mucosa, oral dysplasia and oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2007;36:263-6.
59. Kyzas PA, Cunha IW, Ioannidis JP. Prognostic significance of vascular endothelial growth factor immunohistochemical expression in head and neck squamous cell carcinoma: a meta-analysis. Clin Cancer Res 2005;11:1434-40.
60. Kyzas PA, Stefanou D, Agnantis NJ. COX-2 expression correlates with VEGF-C and lymph node metastases in patients with head and neck squamous cell carcinoma. Mod Pathol 2005;18:153-60.
61. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996;15:290-98.
62. Berra E, Pages G, Pouyssegur J. MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 2000;19:139-45.
63. Gerber H-P, McMurtrey A, Kowalski J, et al. Vascular Endothelial Growth Factor Regulates Endothelial Cell Survival through the Phosphatidylinositol 3'-Kinase/Akt Signal Transduction Pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998;273:30336-43.
64. Pedram A, Razandi M, Levin ER. Extracellular Signal-regulated Protein Kinase/Jun Kinase Cross-talk Underlies Vascular Endothelial Cell Growth Factor-induced Endothelial Cell Proliferation. J Biol Chem 1998;273:26722-8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code