Responsive image
博碩士論文 etd-0902110-165350 詳細資訊
Title page for etd-0902110-165350
論文名稱
Title
彎曲平板波元件之機電特性研究
Study on Electrical and Mechanical Characteristics of Flexural Plate Wave Device
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-31
繳交日期
Date of Submission
2010-09-02
關鍵字
Keywords
半高寬、交指叉式電極、彎曲平板波、機電耦合係數、氧化鋅壓電薄膜、X-Ray繞射強度
Flexural plate wave, Electromechanical coupling coefficient, Full width at half maximum, Interdigital transducer, X-Ray diffraction, ZnO piezoelectric thin-film
統計
Statistics
本論文已被瀏覽 5676 次,被下載 0
The thesis/dissertation has been browsed 5676 times, has been downloaded 0 times.
中文摘要
目前聲波感測器(Acoustic Sensor)已被廣泛的應用於質量感測上,包含了表面聲波(SAW)感測器、彎曲平板波(FPW)感測器、剪應力(TSM)震盪器、剪力水平板波(SH-APM)感測器,其中又因彎曲平板波(Flexural Plate Wave, FPW)微型感測元件具高質量靈敏度、低傳播速度與低工作頻率等特性,特別適用於需液態測量的環境,如生醫感測,液體黏滯性測量等應用;然而因元件具有感測訊號插入損失較大且容易受雜訊干擾等缺點,不易與後端IC電路整合成微系統,故為了改善其缺點,所以本論文將利用微機電系統(MEMS)技術設計改變交指叉式電極(Interdigital Transducer, IDT)之結構且結合高C軸取向之壓電薄膜研發出具有低訊號插入損失、低工作頻率、高機電轉換特性之FPW元件。
本研究首先利用RF-Sputter開發出一具繞射角度為34.2o其繞射強度高達20944 A.U.,半高寬(Full Width at Half Maximum, FWHM)為0.573o之氧化鋅壓電感測薄膜,並經由包括五次黃光微影(Photolithography)與七次薄膜沉積之製程開發出工作頻率約為0.1 MHz,訊號之插入損失在11 dB到14 dB,機電耦合系數(Electromechanical Coupling Coefficient, K2)高達11 %之FPW元件。由量測結果特性顯示本研究已成功研發改良出FPW元件。
Abstract
Acoustic micro-sensors have already been applied in mass sensing including surface acoustic wave (SAW), flexural plate wave (FPW), thickness shear mode (TSM) and shear horizontal acoustic plate mode (SH-APM). The FPW micro-sensor is very suitable for liquid-sensing and bio-sensing applications due to the high mass-sensitivity and low phase-velocity in liquid. However, the conventional FPW micro-sensors presented a high insertion-loss (IL) and a low signal-to-noise ratio so it is difficult to combine with IC into a micro-system.
To overcome these drawbacks, this study combine the Microelectromechanical System (MEMS) technology and the high C-axis orientation ZnO piezoelectric thin-film to develop a low insertion loss, low operation frequency, and high electromechanical coupling coefficient FPW device. In this study, a high C-axis orientation ZnO piezoelectric thin-film with a 20944A.U. X-Ray diffraction intensity at 34.200 degree and a 0.573 degree full width at half maximum (FWHM) was deposited by a commercial magnetic radio-frequency (RF) sputter system. The total processes of the FPW micro-sensor included five photolithography and seven thin-film depositions. In this study a low operation frequency (0.1MHz), low insertion loss (11dB to 14dB) and high electromechanical coupling coefficient (11%) FPW sensor was developed and fabricated.
目次 Table of Contents
摘要.............................................................................................................I
Abstract.................................................................................................... III
誌謝.......................................................................................................... V
目錄..........................................................................................................VI
圖目錄.....................................................................................................VII
表目錄......................................................................................................IX
第一章 緒論..............................................................................................1
1-1 前言..............................................................................................1
1-2 研究動機......................................................................................4
1-3 文獻回顧......................................................................................5
1-3-1 剪應力(Thickness shear mode, TSM)震盪器……..….…5
1-3-2 表面聲波(Surface Acoustic Wave, SAW)感測器….....…6
1-3-3 剪力水平板波(Shear Horizontal Acoustic Plate Mode, SH-APM)感測器…………………………….…..7
1-3-4 彎曲平板波(Flexural Plate Wave, FPW)感測器………...8
第二章 彎曲平板波元件之理論與分析................................................14
2-1彎曲平板波元件之研究.............................................................14
2-1-1彎曲平板波元件之相速度理論推導...............................15
2-1-2金屬指叉式電極之等效電路分析...................................17
2-2 壓電材料分析...........................................................................22
2-2-1壓電薄膜材料選擇...........................................................24
2-2-2氧化鋅壓電薄膜晶格結構與特性之簡介.......................25
2-2-3 氧化鋅薄膜沉積方式………..........................................27
2-2-4 反應性射頻磁控濺鍍原理簡介......................................27
2-2-5 壓電薄膜X光繞射分析..................................................30
第三章 元件設計與製作流程..............................................................33
3-1 FPW元件之光罩佈局設計……………………........................33
3-2 FPW元件之製程整合設計……................................................38
3-2-1 FPW元件之製作流程......................................................38
3-2-2 詳細製程步驟與參數......................................................40
3-3 實驗設備規格............................................................................46
第四章 結果與討論................................................................................54
4-1 氧化鋅薄膜之材料特性分析....................................................54
4-2元件量測結果與分析.................................................................61
第五章 結果與未來展望........................................................................75
5-1 結論............................................................................................75
5-2 未來展望....................................................................................76
參考文獻..................................................................................................77
參考文獻 References
[1] 「微機電系統技術與應用」 ,行政院國家科學委員會精密儀器發展中心出版,2003。
[2] D. S. Ballantine and David Stephen, “Acoustic wave sensor: theory,design, and physico-chemical applications,” San Diego, Academic Press, Inc., 1997.
[3] R. W. Cernosek, “An Overview of Acoustic Wave Devices for chemical&biological sensing, Biological Detection, and Materials Characterization,” Solid-State Sensor Lecture, Auburn University, Auburn, AL, 2002.
[4] 李其源,「蝕刻晶片厚度即時監控之新穎方法」,國立台灣大學機械工程研究所博士論文,2004。
[5] 吳德春,「薄膜式表面聲波元件之製作與分析」,中原大學電子工程學系碩士論文,2002。
[6] D. W. Galipeau, P. R. Story, K. A. Vetelino and R. D. Mileham,“surface acoustic wave microsensors and applications,” Smart Mater.Struct. 6, pp.658-667, 1997
[7] A. Pohl, “A review of wireless SAW sensors,” IEEE Trans. Ultras. Ferr. Freq. Contr. 47, pp.317-332, 2000
[8] B. Drafts, “Acoustic Wave Technology Sensors,” IEEE Trans. On Microwave Theory and Techniques, vol. 49, No. 4, 2001
[9] M. J. Velekoop, “Acoustic wave sensors and their technology,” Ultrasonics, vol. 36, pp.7-14, 1998
[10] M. E. Motamedi and R. M. White, “Acoustic sensor in semiconductor Sensor,” John Wiely & Sons, Inc.,New York, 1994.

[11] M. S. Weinberg, B. T. Cunningham, C. W. Clapp, “Modeling Flexural Plate Wave Device,” IEEE J. Microelectromechanical Systems, vol. 9, No.3, pp.370 – 379, 2000.
[12] T. Laurent, F. O. Bastien, J. C. Pommier, A. Cachard, D. Remiens, E. Cattan, “Lamb Wave and plate mode in ZnO/silicon and AlN/silicon membrane Application to sensors able to operate in contact with liduid,” Sensor and Actuator 87, pp. 26-37, 2000.
[14] J. W. Gardner, Vijay k. Varadan and Osama O. Awadelkarim, “Microsensors MEMS and Smart Devices” John Wiely & Sons, Inc., 2001.
[15] 余嘉銘,「壓電彎曲平板波生物感測器」,國立中正大學電機工程研究所碩士論文,2003。
[16] W.R. Smith, H.M. Gerard, J.H. Collins, T.M. Reeder, and H.J. Shaw, “Analysis of Interdigital Surface Wave Transducers by Use of Equivalent Circuit Model,” IEEE Trans. Microwave Theory and Techniques, vol. MTT-17, No.11, pp.856-864, Nov. 1969.
[17] T. Mitsuyu, S. Ono, and K. Wasa, “Structures and SAW properties ofrf-sputtered single-crystal films of ZnO on sapphire,” Journal of Applied Physics, vol.51 p.2464-2470, 1980.
[18] V. Mortet, O. Elmazria, M. Nesladek, M. B. Assouar, “Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures,” Applied Physics Letters, vol.81 p.1720-1722, 2002.
[19] Yoshihiko Shibata, Kiyoshi Kaya, and Kageyasu Akashi, “Epitaxial growth and surface acoustic wave properties of lithium niobate films grown by pulsed laser deposition,” Journal of Applied Physics, vol.77 p.1498-1503, 1995.
[20] 林素霞,「氧化鋅薄膜的特性改良及應用之研究」,國立成功大學材料科學及工程研究所博士論文,2003。
[21] B. T. khuri-Yakub, J. G. Smits and T. Barbee, “Reactive magnetron sputtering of ZnO,” J. Appl. Phys.52(7), p.4772-4774, July 1981.
[22] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, “Optimization of zinc oxide thin film for surface acoustic wave filters by ratio frequency sputtering,” Vacuum 59, p.538-545, 2000.
[23] Hong Xiao原著,羅正忠、張鼎張譯,「半導體製程技術導論」,學銘圖書。
[24] 汪建民主編,「材料分析」,中國材料科學學會。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.218.38.125
論文開放下載的時間是 校外不公開

Your IP address is 18.218.38.125
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code