Responsive image
博碩士論文 etd-0902110-184622 詳細資訊
Title page for etd-0902110-184622
論文名稱
Title
利用奈米碳管與電化學預處理修飾網版印刷碳電極選擇性偵測尿酸之研究
Selective Determination of Uric Acid in the Presence of Ascorbic Acid at Screen-Printed Carbon Electrode Modified with Electrochemically Pretreated Carbon Nanotube
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-28
繳交日期
Date of Submission
2010-09-02
關鍵字
Keywords
網版印刷碳電極、尿酸、多壁奈米碳管、差式脈波伏安法
Screen-printed carbon electrode, Uric acid, Multi-walled carbon nanotube, Differential Pulse Voltammetry
統計
Statistics
本論文已被瀏覽 5740 次,被下載 8531
The thesis/dissertation has been browsed 5740 times, has been downloaded 8531 times.
中文摘要
尿酸(Uric acid,UA)是人體內嘌呤(Purine)物質經肝臟代謝後的最終產物,存在於血液與尿液中,若濃度過高則易引發高尿酸血症(Hyperuricemia)、痛風(Gout)等疾病,因此監測血液或尿液中尿酸的濃度是掌握病況的重要方法。由於分析儀器小巧靈敏,使得利用電化學方法偵測尿酸之研發與日俱增,但在測定血液與尿液中之尿酸時,遭遇到最主要的挑戰是維他命C(Ascorbic acid,AA)的干擾,其主因是維他命C與尿酸之氧化電位太過接近。
本研究將多壁奈米碳管(Multi-Walled Carbon Nanotube,MWCNT)修飾在可拋棄式之網版印刷碳(Screen-Printed Carbon,SPC)電極表面,並經循環伏安法(Cyclic Voltammetry,CV)於0∼2 V間掃瞄作電化學預處理後,使得電極表面氧化生成羧基與羰基等官能基而具有電催化效果,致使原本幾乎重疊的UA和AA氧化波峰訊號變成分離的兩波峰(波峰電位相差約0.34 V)而不會彼此干擾。此外,奈米碳管除了尺寸極小、多孔性可增加反應表面積與靈敏度外,更可提升電子轉移速率而強化其電催化的能力。電化學阻抗光譜法(Electrochemical Impedance Spectroscopy)量測結果亦證實,經過電化學預處理或修飾上MWCNT之電極皆可明顯提昇電子轉移速率(阻抗值皆大幅降低);且在電極特性探討過程中發現,尿酸在本研究使用之電極上氧化是屬於吸附控制(Adsorption-controlled)。在0.1 M pH 5.5之檸檬酸緩衝溶液中,利用差式脈波伏安法(Differential Pulse Voltammetry)偵測尿酸,測得訊號之再現性良好(不同電極:RSD = 8.3%,n = 5;而同一電極RSD = 3.1%,n = 5)。其校正曲線之線性範圍約在2∼30 μM,線性關係R2 = 0.996,偵測極限為1 μM;此外可能干擾物中Cysteine在高濃度(20 μM以上)會與尿酸競爭吸附,而降低尿酸氧化訊號;另外Dopamine亦會在高濃度時(10 μM以上)產生干擾。以此修飾之SPC電極可測得尿液與血清樣品中的尿酸含量,且所需之樣品量極少(各需25 μL、200 μL)。
Abstract
none
目次 Table of Contents
摘 要 ............................................................................................................... I
謝 誌 .............................................................................................................. II
目 錄 ............................................................................................................. III
圖 目 ............................................................................................................ VI
表 目 ............................................................................................................ IX
壹、緒論 ............................................................................................................... 1
一、尿酸及痛風簡介 .................................................................................... 1
二、傳統測定尿酸之方法 ............................................................................ 7
三、結合電化學方法偵測尿酸 .................................................................. 10
四、奈米碳管的特性 .................................................................................. 16
五、差式脈波伏安法 .................................................................................. 19
六、電化學阻抗光譜法 .............................................................................. 21
七、研究目的 .............................................................................................. 23
貳、實驗部份 ..................................................................................................... 25
一、儀器設備 .............................................................................................. 25
二、藥品 ...................................................................................................... 27
三、溶液之製備 .......................................................................................... 32
四、奈米碳管修飾之網版印刷碳電極之製作.......................................... 35
五、實驗過程 .............................................................................................. 40
參、結果與討論 ................................................................................................. 43
一、修飾奈米碳管與電化學預處理的效果 .............................................. 43
1. 未修飾奈米碳管僅作電化學預處理 .............................................. 43
2. 修飾奈米碳管並經過電化學預處理 .............................................. 46
3. 修飾奈米碳管並經過電化學預處理後之SPC 電極特性 ............ 52
二、差式脈波伏安法參數探討 .................................................................. 61
三、除氧效果的探討 .................................................................................. 64
四、利用奈米碳管修飾SPC 電極之最佳化條件探討 ............................ 66
五、溶液pH 值對尿酸與維他命C 偵測訊號之影響 .............................. 70
六、最佳實驗條件 ...................................................................................... 77
七、電極再現性 .......................................................................................... 78
八、線性範圍與偵測極限 .......................................................................... 80
九、可能干擾物的影響 .............................................................................. 83
十、真實樣品分析 ...................................................................................... 86
肆、結論 ............................................................................................................. 92
伍、參考文獻 ..................................................................................................... 93
陸、附錄 ............................................................................................................. 98
一、不同電化學分析法測定尿酸之比較 .................................................. 98
二、不同DPV 參數測定尿酸之比較 ........................................................ 98
三、測定多巴胺的可行性 ........................................................................ 101
柒、簡歷 ........................................................................................................... 103
參考文獻 References
1. 何敏夫,臨床化學第二版,合記圖書,1999,pp.228-232。
2. 李信興,廖桂聲,中西醫會診:痛風,書泉出版社,2002。
3. 魯焰,痛風四季飲食,開明書店,2003。
4. Skoog, D.A.; Holler, F. J.; Crouch, S. R. Principle of Instrumental Analysis,
6thed.; Thomas Brooks/Cole. 2007, pp.10-11.
5. http://www.chemedu.ch.ntu.edu.tw/lecture/molecular/2.htm (2001)
6. Campbell, N. A.; Mitchell, L. G.; Reece, J. B. 彩色圖說生物學 : 槪念與
關聯性. 合記圖書,2003.
7. Tang, H.; Hu, G. Z.; Jiang, S. X. Selective determination of uric acid in the
presence of ascorbic acid at poly(p-aminobezene sulfonic acid)-modified
glassy carbon electrode. J. Appl. Electrochem., 2009, 39, 2323-2328.
8. Zhang, L.; Zhang, C. H; Lian, J. Y. Electrochemical synthesis of polyaniline
nano-networks on p-aminobenzene sulfonic acid functionalized glassy
carbon electrode Its use for the simultaneous determination of ascorbic acid
and uric acid. Biosens. Bioelectron., 2008, 24, 690-695.
9. Kalimuthu, P.; John, S. A. Simultaneous determination of ascorbic acid,
dopamine, uric acid and xanthine using a nanostructured polymer film
modified electrode. Talanta, 2010, 80, 1686-1691.
10. Kalimuthu, P.; John, S. A. Simultaneous determination of epinephrine, uric
acid and xanthine in the presence of ascorbic acid using an ultrathin polymer
film of 5-amino-1,3,4-thiadiazole-2-thiol modified electrode. Anal. Chim.
Acta, 2009, 647, 97-103.
11. Kuwabata, S.; Nakaminami, T.; Ito, S.; Yoneyama, H. Preparation and
properties of amperometric uric acid sensors. Sens. Actuators B Chem., 1998,
52, 72-77.
12. Wang, X. Y.; Yin, F.; Tu, Y. F. A uric acid biosensor based on
Langmuir-Blodgett film as an enzyme-immobilizing matrix. Anal Lett., 2010, 43, 1507-1515.
13. 趙辰濤,電流式尿酸生物感測器之製備及測試,碩士論文,國立台灣科
技大學化學工程系,2009。
14. Cete, S.; Yasar, A.; Arslan, F. An Amperometric Biosensor for Uric Acid
Determination Prepared from Uricase Immobilized in Polypyrrole Film. Artif.
Cells Blood Substit. Immobil. Biotechnol., 2006, (34), 367-380.
15. Kissinger, P. T.; Heineman, W. R. Laboratory Techniques in
Electroanalytical Chemistry, 2nded.; Marcel Dekker,Inc, 1996.
16. Zen, J. M.; Hsu, C. T. A selective voltammetric method for uric acid
detection at Nafion®-coated carbon paste electrodes. Talanta, 1998, 46,
1363-1369.
17. Shahrokhian, S.; Ghalkhani, M. Simultaneous voltammetric detection of
ascorbic acid and uric acid at a carbon-paste modified electrode
incorporating thionine–nafion ion-pair as an electron mediator. Electrochim.
Acta, 2006, 51, 2599-2606.
18. Noroozifar, M.; Motlagh, M. K.; Taheri, A. Preparation of silver
hexacyanoferrate nanoparticles and its applictation for the simultaneous
determination of ascorbic aicd, dopamine, and uric acid. Talanta, 2010, 80,
1657-1664.
19. Tehrani, R. M. A.; Ghani, S. A. Volatammetric analysis of uric acid by
zinc-nickel nanoalloy coated composite graphite. Sens. Actuators B Chem.,
2010, 145, 20-24.
20. Huang, X.; Li, Y.; Wang, P.; Wang, L. Sensitive Determination of
Dopamine and Uric Acid by the Use of a Glassy Carbon Electrode Modified
with Poly(3-methylthiophene)/Gold Nanoparticle Composites. Anal. Sci.,
2008, 24, 1563-1568.
21. Zare, H. R.; Nasirizadeh, N. Simultaneous determination of ascorbic acid,
adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode. Sens. Actuators B Chem., 2010, 143,
666-672.
22. Zhang, Y.; Pan, Y.; Su, S.; Zhang, L.; Li, M.S. A novel functionalized
single-wall carbon nanotube modified electrode and its application in
detection of dopamine and uric acid in the presence of high concentration of
ascorbic acid. Electroanalysis, 2007, 19, 1695-1701.
23. Manjunatha, R.; Suresh, G. S.; Melo, J. S.; D’Souza, S. F.; Venkatesha, T. V.
Simultaneous determination of ascorbic acid , dopamine and uric acid using
polystyrene sulfonate wrapped multiwalled carbon nanotubes bound to
graphite through layer-by-layer technique. Sens. Actuators B Chem., 2010,
145, 643-650.
24. Ardakani, M. M.; Beitollahi, H.; Ganjipour, B.; Naeimi, H.; Nejati, M.
Electrochemical and catalytic investigations of dopamine and uric acid by
mofdified carbon nanotube paste electrode. Bioelectrochemistry, 2009, 75,
1-8.
25. Liu, A.; Honma, I.; Zhou, H. Simultaneous voltammetric detection of
dopamine and uric acid at their physiological level in the presence of
ascorbic acid using poly(acrylic acid)-multiwalled carbon-nanotube
composite-covered glassy-carbon electrode. Biosens. Bioelectron., 2007, 23,
74-80.
26. Zhang, Y.; Pan, Y.; Su, S.; Zhang, L.; Li, S.; Shao, M. A Novel
Functionalized Single-Wall Carbon Nanotube Modified Electrode and Its
Application in Determination of Dopamine and Uric Acid in the Presence of
High Concentrations of Ascorbic Acid. Electroanalysis, 2007, 19,
1695-1701.
27. http://www.nsc.gov.tw/scicircus/public/Attachment/731912574671.pdf
28. Zhou, O. F., R. M.; Murphy, D. W.; Chen, C. H.; Haddon, R. C.; Ramirez, A.
P.; Glarum, S. H Defects in carbon nanostructures. Science, 1994, 163, 1744-1747.
29. Amelinckx, S. B., D; Zhang, X. B.; Tendeloo, V.; Landyut, J. V. A Structure
model and Growth Mechanism for Multishell Carbon Nanotubes. Science,
1995, 267, 1334-1338.
30. Ebbesen, T. W. L., H. J.; Hiura, H. J.; Bennett, W.; Ghaemi, H. F.; Thio, T.
Electrical conductivity of individual carbon nanotubes. Nature, 1996, 382,
54-56.
31. Dai, H. J. W., E. W.; Lieber, C. M. Probing electrical transport in
nanomaterials: Conductivity of individual carbon nanotubes Science, 1996,
272, 523-526.
32. 成會明,奈米碳管,五南出版社,2004。
33. Saito, R. Physical properties of carbon nanotubes; Imeprial college press,
1998.
34. Unwin, P. R. Instrumentation and electroanalytical chemistry;Weinheim :
Wiley-VCH, 2003.
35. Park, S.M.; Yoo, J.S. Peer Reviewed: Electrochemical Impedance
Spectroscopy for Better Electrochemical Measurements. Anal. Chem., 2003,
75, 455A-461A.
36. Thiagarajan, S.; Tsai, T. H.; Chen, S. M. Easy modification of glassy carbon
electrode for simultaneous determination of ascorbic acid, dopamine and uric
acid. Biosens. Bioelectron., 2009, 24, 2712-2715.
37. Chang, C. W.; Tseng, W. L. Gold Nanoparticle Extraction Followed by
Capillary Electrophoresis to Determine the Total, Free, and Protein-Bound
Aminothiols in Plasma. Anal. Chem., 2010, 82, 2696-2702.
38. 鍾協訓,曾志明,網版印刷電極再分析化學上的製作與應用,科儀新知,
1998,第119期,72-82。
39. Rezaei, B.; Zare, S. Z. M. Modified glassy carbon electrode with multiwall
carbon nanotubes as a voltammetric sensor for determination of noscapine in biological and pharmaceutical samples. Sens. Actuators B Chem., 2008, 134,
292-299.
40. Yano, J.; Hirayama, H.; Harima, Y.; Kitanib, A. Electrochemical and
UV-Visible Spectroscopic Study on Direct Oxidation of Ascorbic Acid on
Polyaniline for Fuel Cells. J. Electrochem. Soc., 2010, 157, 506-511.
41. Alwarappan, S.; Liu, G.; Li, C.-Z. Simultaneous detection of dopamine,
ascorbic acid, and uric acid at electrochemically pretreated carbon nanotube
biosensors. Nanomedicine., 2010, 6, 52-57.
42. Ensafi, A. A.; Taei, M.; Khayamian, T. Differential Pulse Voltammetric
Method for Simultaneous Determination of Ascorbic Acid, Dopamine and
Uric Acid Using Poly(3-(5-Chloro-2-Hydroxyphenylazo)-4,5-
Dihydroxynaphthalene-2,7-Disulfonic Acid) Film Modified Glassy Carbon
Electrode. J. Electroanal. Chem., 2009, 633, 212-220.
43. Thiagarajan, S.; Chen, S. M. Preparation and characterization of PtAu hybrid
film modified electrodes and their use in simultaneous determination of
dopamine, ascorbic acid and uric acid. Talanta, 2007, 74, 212-222.
44. Liu, Y.; Huang, J.; Hou, H.; You, T. Simultaneous determination of
dopamine, ascorbic acid and uric acid with electrospun carbon nanofibers
modified electrode. Electrochem. Commun, 2008, 10, 1431-1434.
45. Zheng, D.; Ye, J.; Zhou, L.; Yu, Y. Z. C. Simultaneous determination of
dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion
composite film. J. Electroanal. Chem., 2009, 625, 82-87.
46. Li, Y. X.; Lin, X. Q. Simultaneous electroanalysis of dopamine, ascorbic
acid and uric acid by poly (vinyl alcohol) covalently modified glassy carbon
electrode. Sens. Actuators B Chem., 2006, 115, 134-139.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code