Responsive image
博碩士論文 etd-0902110-205410 詳細資訊
Title page for etd-0902110-205410
論文名稱
Title
運用體型與面型微加工技術製作矽基懸浮天線
Fabrication of Si-based Suspending Antenna by Bulk-micromachining and Surface-micromachining Technologies
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-31
繳交日期
Date of Submission
2010-09-02
關鍵字
Keywords
矽基懸浮式天線、反射損失、輻射效率
Radiation efficient, Return loss, Si-based Suspending Antenna
統計
Statistics
本論文已被瀏覽 5698 次,被下載 0
The thesis/dissertation has been browsed 5698 times, has been downloaded 0 times.
中文摘要
本論文首度運用電化學沉積(Electrochemical deposition)、面型微加工(Surface micromachining)及體型微加工(Bulk micromachining)製程技術開發一種具週期性結構之創新型懸浮式天線,以大輻降低從基板反射之電磁波,該元件可應用於802.11a無線通訊系中。
為了增加天線之頻寬與輻射效率以及降低天線之反射損失(Return loss),本論文提出下列兩種特殊天線結構之設計:(i)經由設計最佳化週期性結構可減少從基板底層反射之電磁波,以降低天線之反射損失;運用體型微加工技術蝕刻矽基板背部所需之空腔,以降低矽基板之等效介電常數,進而增加天線之頻寬;(ii)利用懸浮結構之設計以減少基板的能量損失;並用高頻模擬軟體驗證上列所設計之結果。
本論文所開發之具週期性結構矽基懸浮式天線,經商用網路分析儀所測得之高頻特性1 GHz~8 GHz,所有量測數據(頻寬與反射損失)皆進一步透過商用模擬軟體萃取與分析;經量測結果,本論文所設計開發之最佳化具週期性結構矽基懸浮式天線之量測結果之中心頻率為4.85 GHz、反射損失為-35.5 dB及中心頻寬比高達42.9% (3.75 ~ 5.8 GHz)。總而言之,本論文透過高頻軟體與MEMS技術,成功開發出具創新結構之低反射損失特性寬頻天線,其操作頻率可應用於802.11a無線通訊系統開發。
Abstract
For the application of 802.11a wireless communication system, this thesis aims to develop a novel suspending antenna with periodic structures to reduce electromagnetic wave from substrate using electrochemical deposition, surface micromachining and bulk micromachining technologies.
This research presents two particular structures to increase the bandwidth and the radiation efficient and to reduce the return loss of the antenna, including: (i) the optimum design of periodic structures to restrain electromagnetic wave from substrate and to reduce the return loss of the antenna. To reduce the effective dielectric constant of the silicon substrate and to increase the bandwidth of the antenna, anisotropic etching the backside of the silicon substrate formed regular cavities using bulk-micromachining technology, (ii) to utilize a suspending structure to reduce the power loss through the substrate and to confirm the result using high frequency simulator.
The implemented Si-based suspending antenna with periodic structures were characterized by a commercial network analyzer under 1~8 GHz testing frequency range. All the bandwidth and the return loss of the antenna proposed in this thesis are extracted by the commercial simulation software. Based on the measurement results, the center frequency is equal to 4.85 GHz, the return loss is around -35.5 dB and the bandwidth is equal to 42.9% (3.75~5.8 GHz). Eventually, this thesis successfully develops a low-loss and broadband antenna with novel structures using high frequency simulator and MEMS technologies for 802.11a wireless communication system.
目次 Table of Contents
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X

第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 文獻回顧 4
1-4 實驗方法與論文架構 5
第二章 元件原理介紹 6
2-1 MEMS技術 6
2-1-1 體型微加工技術 8
2-1-2 面型微加工技術 11
2-2 偶極天線理論 12
2-3 映像原理 14
2-4 單極天線理論 16
第三章 具週期性結構懸浮天線設計與模擬 18
3-1 架構簡介 18
3-2 設計流程 23
3-3 天線模擬結果與討論 24
第四章 元件設計與製作流程 28
4-1 電化學銅薄膜沉積原理介紹與最佳化參數 28
4-2 具週期性結構懸浮天線之光罩佈局 29
4-3 具週期性結構懸浮天線之製程整合 30
4-3-1 製作流程 30
4-3-2 製作方法與製程參數 31
第五章 結果與討論 40
5-1 元件製作過程所遭遇的問題與解決方法 40
5-1-1 實驗關鍵製程(MASK1) 40
5-1-2 實驗關鍵製程(MASK2) 41
5-1-3 實驗關鍵製程(MASK3) 42
5-1-4 實驗關鍵製程(MASK4) 44
5-1-5 實驗關鍵製程(KOH) 45
5-1-6 具週期性結構懸浮天線之SEM圖結構分析 47
5-2 模擬與量測結果 48
第六章 結論與建議 52
6-1 結論 52
6-2 建議 54
附錄........ 55
參考文獻 63

圖目錄

圖1-1、背面蝕刻矽基板之微帶天線示意圖 4
圖2-1、偶極天線之電流分布 13
圖2-2、垂直於金屬面之電流源:(A) 示意圖、(B) 等效模型 14
圖2-3、平行於金屬面之電流源:(A) 示意圖、(B) 等效模型 15
圖2-4、單極天線:(A) 示意圖、(B) 電流分佈圖 16
圖2-5、任意方向之電流源:(A)示意圖、(B)等效模型 17
圖3-1、具週期性結構懸浮天線:(A) 正面3D結構圖;(B) 背面 3D結構圖 18

圖3-2、具週期性結構懸浮天線:(A)結構示意圖;(B)饋入端示 意圖 19
圖3-3、背部週期性結構之示意圖 20
圖3-4、具週期性結構之懸浮天線剖面圖 20
圖3-5、四種不同天線結構之剖面圖:(A) TYPE-A; (B) TYPE-B ; (C)TYPE-C; (D)TYPE-D 22
圖3-6、四種不同類型之矽基天線結構之輻射效率模擬結果圖 24

圖3-7、四種不同類型之矽基天線結構之反射損失模擬結果圖 25
圖3-8、四種不同類型之矽基天線結構之最大增益 26
圖4-1、具週期性結構懸浮天線之光罩圖:(A) 定義背部蝕刻結 構圖形之光罩# 1; (B)定義具週期性結構懸浮天線之光 罩# 2; (C)定義具週期性結構懸浮天線之銅柱圖形之光 罩# 3;(D)定義具週期性結構懸浮天線圖形之光罩# 4 29
圖4-2、具週期性結構懸浮天線之製作流程:(A) 沉積熱氧化層 與 NITRIDE 層;(B)定義背部蝕刻結構圖形之光罩 # 1;(C)成長熱氧化層及沉積氮化鉭/鉭/銅並以掀離法定義 底電極之光罩# 2;(D) 定義銅柱位置及電鍍銅柱之光罩 # 3;(E)沉積銅薄膜(F)定義懸浮式天線圖形之光罩# 4; (G)進行KOH蝕刻後將光阻及銅薄膜移除 30
圖5-1、同ㄧ晶片中不同蝕刻孔洞所量得之實際蝕刻深度 40
圖5-2、第一道製程實驗成果圖 41
圖5-3、有機物殘留造成顯影後出現氣泡狀圖形 42
圖5-4、定義第三道光阻圖形OM圖 43
圖5-5、電鍍銅柱失敗OM圖 43
圖5-6、(A)遭殘留的硫酸溶液銅侵蝕;(B)未遭硫酸銅溶液侵蝕
天線底電極之OM圖 44
圖5-7、晶片正面天線之銅實體被KOH侵蝕之OM圖 45
圖5-8、矽基板背部蝕刻孔洞之蝕刻深度量測圖 46
圖5-9、矽基板背部蝕刻孔洞之SEM圖 46
圖5-10、具週期性結構懸浮天線SEM圖 47
圖5-11、TYPE-A天線之模擬與量測之比較圖 49
圖5-12、TYPE-B天線之模擬與量測之比較圖 50
圖5-13、TYPE-C天線之模擬與量測之比較圖 50
圖5-14、TYPE-D天線之模擬與量測之比較圖 51

表目錄

表3-1、具週期性結構懸浮天線之結構參數尺寸列表 19
表3-2、背部週期性結構參數尺寸列表 20
表3-3、四種不同天線結構 22
表3-4、四種不同類型之矽基天線結構的輻射效率 24
表3-5、四種不同類型之矽基天線結構的頻寬與反射損失 25
表3-6、四種不同類型之矽基天線結構的增益模擬結果 26
表3-7、TYPE D之最佳化週期性結構模擬結果表 27
表4-1、具週期性結構懸浮天線詳細製程步驟與實驗參數表 37
參考文獻 References
[1] M. Sohgawa, T. Mima, H. Onishi, T. Kanashima, M. Okuyama, K. Yamashita, M. Noda, M. Higuchi and H. Noma, ”Tactle array sensor with inclined chromium/silicon piezoresistive cantilevers embedded in elastomer,” Transducers 2009, pp. 284–287, 2009.
[2] W. Wenzheng, J. Mengjun, L Xinxin, H. Yilong, Z. Xing, C. Yuhua and R. Shanghai, “A study of Advanced Modeling Methodology of CMOS-Compatible RF-MEMS Devices for Integrated Circuit Design,” Solid-State and Integrated-Circuit Technology, pp. 516–519, 2008.
[3] Jaehong Park, Eun Sub Shim, Wooyeol Choi, Youngmin Kim, Youngwoo Kwon and Dong-il Cho, “A Non-Contact-Type RF MEMS Switch for 24-GHz Radar Applications,” Journal of Microelectromechanical Systems, vol. 18, no.1, pp. 163–173, 2009.
[4] A. Oz and G. K. Fedder, “CMOS-Compatible RF-MEMS Tunable Capacitors,” Microwave Symposium Digest, 2003 IEEE MTT-S International, vol. 1, pp. A97–A100, 2003.
[5] J. Zeng, C. Wang, and A. J. Sangster, “Theoretical and Experimental Studies of Flip-Chip Assembled High-Q Suspended MEMS Inductors,” IEEE Trans. on Microwave Theory and Techniques, vol. 55, no.6, pp. 1171–1181, 2007.
[6] K. Zoschke, J. Wolf, M. Topper, O. Ehrmann, T. Fritzsch, K. Scherpinski, H. Reichl and F. J. Schmuckle’, “Thin Film Integration of Passives - Single Components, Filters, Integrated Passive Devices,” Electronic Components and Technology Conference, vol. 1, pp. 294–301, 2004.
[7] X. Zhang, X. Wencheng, A. T. Abbas and C. Junseok, “Thermal Analysis and Characterization of a High Q Film Bulk Acoustic Resonator (FBAR) as Biosensers in Liquids,” IEEE International Conference on Micro Electro Mechanical Systems, pp. 939–942, 2009.
[8] Z. Liwei, M. Min, B. Jingpeng, J. Yufeng, “A 10-14 GHz RF MEMS Tunable Bandpass Filter,” International Conference on Solid-State and Integrated-Circuit Technology, pp. 2516–2519, 2008.
[9] L. H. Truong, Y. H. Baek, S. G. Choi, M. K. Lee , D. H. Ko, S. J. Lee, D. N. Chien, Y. S. Chae and J. K. Rhee, “A Compact W-Band Planar Quasi-Yagi Antenna on GaAs Substrate for Active Phased Array Antenna,” Global Symposium on Millimeter Waves, pp. 123–126, 2008.
[10] J. A. G. Akkermans, M. H. A. J. Herben and M. C. van Beurden, “Balanced-Fed Planar Antenna for Millimeter-Wave Transceivers,” IEEE Trans. on Antennas and Propagation, vol. 57, no. 10, pp. 2871–2881, 2009.
[11] K. P. Heppenheimer, V. Larissa and R. Peter, “Planar Antennas on Silicon for Millimeterwave Emitters,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 205–209, 2001.
[12] Z. N. Chen, D. Liu and B. Gaucher, “A Planar Dualband Antenna for 2.4 GHz and UWB Laptop Applications,” IEEE Vehicular Technology Conference, vol. 6, pp. 2652–2655, 2006.
[13] M. Ono, N. Suematsu, S. Kubo, Y. Iyama, T. Takagi and O. Ishida, “1.9GHz/5.8GHz-Band On-Chip Matching Si-MMIC Low Noise Amplifiers Fabricated on High Resistive Si Substrate,” IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 493–496, 1999.
[14] L. Simon, J. Changming, L. Lawrence, T. Minghsing, D. Michael, G. Albert, J. T. Wetzel, K. A. Monnig, P. A. Winebarger, J. Simon, Y. Douglas and M. S. Liang, “Low-k Dielectrics Characterization for Damascene Integration,” Proceedings of the IEEE 2001 International Interconnect Technology Conference, pp. 146–148, 2001.
[15] W. Wu, F. Huang, Y. Li, S. Zhang, X. Han, Z. Li, Y. Hao and Y. Wang, “RF Inductors With Suspended and Copper Coated Thick Crystalline Silicon Spirals for Monolithic MEMS LC Circuits,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 12, pp. 853–855, 2005.
[16] I. Papapolymerou, R. F. Drayton and L. P. B Katehi, “Micromachined patch antenna,” IEEE trans. on Antennas and Propagation, pp. 275–283, 1998.
[17] Q. Chen, V. F. Fusco, M. Zheng and P. S. Hall, “Micromachined silicon antennas,” Proceedings of the International Conference on Microwave and Milimeter wave Technology, pp. 289–292, 1998.
[18] J. W. YooK, L. P. B. Katehi, “Micromachined patch antenna with controlled mutual coupling and surface waves,” IEEE trans. on Antennas and Propagatio, vol. 49, pp. 1282–1289, 2001
[19] B. A. Shenouda, L. W. Pearson and J. E. Harriss, “Etched-Silicon Micromachined W-band Waveguides and Horn Antennas, ” IEEE Trans. on Microwave Theory and Techniques, vol. 49, no. 4, pp. 724–727, 2001.
[20] R. P. Feynman, “There’s Plenty of Room at the Bottom, ” Journal of Microelectromechanical Systems, vol. 1, no. 1, pp. 60–66, 1992.
[21] T. R. Hsu ,MEMS and Microsystems Design, Manufacture and Nanoscale Engineering , 2rd ed. John Wiley and Sons, Inc., 2008.
[22] S. C. Gong, “Fabrication of Pressure Sensor Using Silicon Bonding,” Sensor and Material, vol. 16, no.3, pp.119-131, 2004.
[23] W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed., New York: Wiley, 1998.
[24] C. A. Balanis, Antenna Theory and Design, 3rd ed., New York: Wiley, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.96.159
論文開放下載的時間是 校外不公開

Your IP address is 3.144.96.159
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code