Responsive image
博碩士論文 etd-0902111-140225 詳細資訊
Title page for etd-0902111-140225
論文名稱
Title
石化工業區環境大氣中揮發性有機污染物垂直空間分佈及季節變化趨勢分析
Vertical Distribution and Seasonal Variation of Volatile Organic Compounds in the Ambient Atmosphere of a Petrochemical Industrial Complex
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
212
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-10
繳交日期
Date of Submission
2011-09-02
關鍵字
Keywords
臭氧生成潛勢、主成份分析、層化現象、垂直剖面採樣、揮發性有機物
ozone formation potential., principal component analysis, stratification phenomena, vertical profile sampling, Volatile organic compounds
統計
Statistics
本論文已被瀏覽 5788 次,被下載 451
The thesis/dissertation has been browsed 5788 times, has been downloaded 451 times.
中文摘要
北高雄地區聚集台灣中油公司高雄煉油廠、仁武及大社工業區等大型石化工廠,其所排放之大量空氣污染物,已成為此區域空氣品質不良的重要影響因素。而高煙囪及廢氣燃燒塔為工廠處理各類有害污染物的最終管道,意味著高煙囪處理效率的高低,是影響高雄地區空氣品質結果的關鍵。有鑑於此,本研究利用繫留氣球(tethered balloon)採樣法進行空氣污染物之垂直剖面採樣,探討其垂直剖面變化與不同季節之時空分佈趨勢。
本研究分別於 2009 年9 月17~18 日、2009 年12 月20~21 日、2010 年4 月8~9 日及2010 年7 月7~8 日在北高雄石化工業區上下風處進行VOCs 採樣與分析。此外,另針對廢氣燃燒塔及製程排放管道進行檢測,以瞭解VOCs 指紋特徵,並推估各排放管道之排放係數,最後利用主成份分析法及臭氧生成潛勢,探討北高雄石化工業區排放空氣污染物對環境空氣品質之影響。
本研究發現部分採樣點之空氣品質不良程度明顯較其它採樣點嚴重,其採樣點多半位於石化工業區下風處,推測原因可能與北高雄地區盛行風向為西北風有關。此外,在不同採樣點均發現高空污染物濃度大於地面之層化現象,顯示出高空VOCs 污染情形亦不可忽視。
就 VOCs 物種而言,本研究發現北高雄石化工業區指標污染物係以甲苯、乙烯+乙炔+乙烷及丙酮為主,此外,由不同高層之VOCs物種分佈可看出,地面與高空VOCs 物種具有不同之指紋特徵,推測高空明顯受到石化工業區高煙囪排放所影響。
本研究利用主成份分析法篩選 VOCs 之可能污染來源,其分析結果顯示,各主成份之特徵因子與石化工業區排放VOCs 之特徵相似,顯示其污染來源應與北高雄石化工業區具有一定程度的相關性。此外,距離地表越遠之VOCs 特徵因子尤以石化產業為主,顯示出北高雄地區明顯受到高煙囪排氣之影響。另由O3 生成潛勢結果得知,北高雄地區生成O3 之VOCs 以苯環類及烯類為主,VOCs 物種則是以甲苯及乙烯+乙炔+乙烷為主要貢獻物種,而冬季則為O3 污染最嚴重之季節。
最後,本研究針對排放管道進行解析,由廢氣燃燒塔二次檢測結果發現,廢氣組成分以烯類、烷類為主,VOCs 之平均破壞去除率為98.2%。而平均之排放係數則為0.0186 kg NMHC/ kg flared gas。此外,在製程排放管道方面,P105、P060 及P408 之排放係數分別為0.105
g/kL、1.11 g/Kl 及61.97 g/Kl,所推估結果與AP-42 之排放係數資料相比較,除P060 管道因混合製程無相關資料可比較外,P105 管道排放係數有明顯偏低情形,而P408 管道排放係數略偏高,但與AP-42資料較相近。
Abstract
The emission of volatile organic compounds (VOCs) and odors from petrochemical industrial complex, including China Petroleum company (CPC),Renwu and Dazher petrochemical industrial parks, causes poor air quality of northern Kaohsiung. The removal efficiencies of elevated stacks and flares might play
important roles on ambient air quality in metro Kaohsiung. Consequently, this study
applied a tethered balloon technology to measure the vertical profile of VOCs, and
ascertained their three dimensional dispersion in the atmosphere.
The vertical profile of VOCs in ambient atmosphere surrounding the
petrochemical industrial complex was measured during the intensive sampling periods
(September 17-18th and December 20-21st, 2009 and April 8-9th and July 7-8th, 2010).
Moreover, this study was designed to sample and analyze VOCs emitted from
elevated stacks and flares, and estimate their emission factors. Finally, the source
identification and ozone formation were further determined by principal component
analysis (PCA) and ozone formation potential (OFP).
This study found that some regions had relatively poorer air quality than other
regions surrounding the petrochemical industrial complex. Most sampling sites with
poor air quality were located at the downwind region of the petrochemical industrial
complex, particularly with the prevailing winds blown from the northwest. Moreover,
stratification phenomena were frequently observed at most sampling sites, indicating
that high-altitude VOCs pollution should be considered for ambient air quality.
This study revealed that the indicators of VOCs in northern Kaohsiung were
toluene, C2 (ethylene+acetylene+ethane), and acetone. Vertical sampling of VOCs
showed that the species of VOCs at the ground and high altitude were different,
suggesting that ambient air quality at high altitude might be affected by the emission
of VOCs from elevated stacks and flares at the petrochemical industrial complex.
Results obtained from PCA showed that the major sources of VOCs in the
ambient atmosphere of the petrochemical industrial complex were similar to the characteristics of VOCs emitted from the petrochemical industrial complex. The
characteristics of VOCs at high altitude had strong correlation with petrochemical
industry, indicating that the ambient air quality of northern Kaohsiung was highly
influenced by the emission of VOCs from high stacks and flares. In addition, major
VOCs for O3 formation potential at northern Kaohsiung were aromatics and vinyls,
with particular species of toluene and C2. Moreover, air pollution episodes resulting
from high O3 concentration was usually observed in early winter.
Flare sampling results indicated that major VOCs emitted from the ground flare
of CPC were alkanes and vinyls. The average removal efficiency of TVOCs was
98.2%. The average emission factor of VOCs was 0.0186 kg NMHC/kg flare gas. In
addition, stack sampling results indicated that the emission factors of crude oil
distillation process (P105), mixing process (P060), and rubber manufacturing process
(P408) were 0.105, 1.11, and 61.97 g/Kl, respectively. The emission factor of P105
was lower than AP-42, while that of P408 was higher than AP-42.
目次 Table of Contents
謝誌……..……..……..……..……..……..……..……..……..……..……. I
中文摘要..……..……..……..……..……..……..……..……..……..……. II
英文摘要…………………………………………………………………. IV
目錄..……..……..……..……..……..……..……..……..……..……..…... VI
表目錄..……..……..……..……..……..……..……..……..……..………. IX
圖目錄..……..……..……..……..……..……..……..……..……..………. XI
第一章前言..……..……..……..……..……..……..……..……..……... 1-1
1-1 研究緣起..……..……..……..……..……..……..……..……….. 1-1
1-2 研究目的..……..……..……..……..……..……..……..……….. 1-2
1-3 研究範圍及架構..……..……..……..……..……..……..……… 1-2
第二章文獻回顧..……..……..……..……..……..……..……..………. 2-1
2-1 揮發性有機物之特性…….…..……..……..……..……..…….. 2-1
2-1-1 揮發性有機物(VOCs)之定義...……..……..…………… 2-1
2-1-2 揮發性有機物之來源…………………………………… 2-3
2-1-3 石化工業區揮發性有機物排放種類………………….... 2-7
2-1-4 揮發性有機物對人體健康之影響……………………… 2-12
2-2 揮發性有機物之管制………………………………………….. 2-14
2-2-1 固定污染源設置與操作許可證管理辦法……………… 2-14
2-2-2 固定污染源空氣污染物排放標準……………………… 2-14
2-2-3 固定污染源空氣污染物連續自動監測設施管理辦法… 2-15
2-2-4 揮發性有機物空氣污染管制及排放標準……………… 2-15
2-3 光化學反應機制……………………………………………….. 2-15
2-3-1 氮氧化物之光化學反應………………………………… 2-16
2-3-2 揮發性有機物之光化學反應…………………………… 2-17
2-4 廢氣燃燒塔構造..……..…………..……..……..……..……….. 2-19
2-4-1 高架燃燒塔構造…………..…………………………….. 2-24
2-4-2 地面燃燒塔構造..………………………………….......... 2-26
2-5 高雄地區氣象及空氣品質現況……....….....…..……..………. 2-27
2-5-1 高雄地區氣象條件現況.....……..…...……..……..…….. 2-27
2-5-2 高雄地區空氣品質現況..……………..……..………….. 2-28
第三章研究方法..……..……..……..……..……..……..……..………. 3-1
3-1 北高雄地區氣象監測資料分析……..……..…....………....….. 3-1
3-2 空氣污染物採樣規劃..…………..……..……………………… 3-1
3-2-1 春季採樣規劃………………………………...………..... 3-1
3-2-2 夏季採樣規劃.…………………………………………... 3-2
3-2-3 秋季採樣規劃……………................................................ 3-2
3-2-4 冬季採樣規劃……………................................................ 3-2
3-3 排放管道採樣規劃……………………………..……………… 3-3
3-3-1 廢氣燃燒塔……………………………………………… 3-3
3-3-2 製程排放管道…………………………………………… 3-4
3-4 高空採樣原理、方法與設備………………………………….. 3-5
3-5 氣態污染物監測原理、方法與分析設備…………………….. 3-6
3-5-1 二氧化硫自動分析儀………………..……...…...…….... 3-9
3-5-2 氮氧化物自動分析儀………………...…...…………….. 3-10
3-5-3 臭氧自動分析儀……………………...…………………. 3-10
3-5-4 碳氫化合物分析儀……………...………………………. 3-11
3-6 揮發性有機物分析原理、方法與設備………...……………… 3-12
3-7 品保與品管(QA/QC).………………………….………….…… 3-19
3-7-1 氣態污染物分析之品保與品管………………………… 3-19
3-7-2 Tedlar 採樣袋空白測試…………………………………. 3-21
3-7-3 揮發性有機物分析之品保與品管....………………..….. 3-22
3-8 污染物擴散及臭氧生成解析………..………………………… 3-23
3-8-1 污染物濃度空間分佈……………....…..……………….. 3-23
3-8-2 主成份分析法…………………………………………… 3-24
3-8-3 最大增量反應性…………………….……..……………. 3-25
3-8-4 臭氧生成潛勢分析.......……..…………………………... 3-26
第四章結果與討論……..………………………………………………4-1
4-1 採樣期間北高雄地區氣象條件分析...………………………... 4-1
4-2 石化工業區環境大氣中氣態污染物採樣分析結果探討.……. 4-12
4-2-1 春季採樣期間氣態污染物分佈趨勢…………………… 4-12
4-2-2 夏季採樣期間氣態污染物分佈趨勢…………………… 4-13
4-2-3 秋季採樣期間氣態污染物分佈趨勢…………………… 4-19
4-2-4 冬季採樣期間氣態污染物分佈趨勢………..………….. 4-22
4-3 石化工業區環境大氣中揮發性有機物採樣分析結果探討….. 4-25
4-3-1 揮發性有機物之物種檢出率………...……………..…... 4-25
4-3-2 揮發性有機物之時間變化趨勢……...….……………… 4-31
4-3-3 揮發性有機物之垂直空間分佈趨勢…………………… 4-45
4-4 排放管道採樣分析結果……………………………………….. 4-66
4-4-1 廢氣燃燒塔…………………...………………………..... 4-66
4-4-2 製程排放管道………………...…………………………. 4-68
4-5 石化工業區污染來源探討…………………………………….. 4-74
4-6 VOCs 之臭氧生成潛勢分析.………………………………….. 4-79
4-7 石化工業區排放管制策略研擬……………………………….. 4-87
第五章結論與建議……………………………………………………. 5-1
5-1 結論..…..……………………………………………………….. 5-1
5-2 建議…………………………………………………………….. 5-2
參考文獻..……………………………………………………………….. R-1
附錄A 揮發性有機物分析之品保品管A-1
附錄B 臭氧生成潛勢與O3 實際監測值比對B-1
附錄C 主要臭氧生成潛勢VOCs 物種與苯環類之相關性分析C-1
附錄D 排放管道及大氣採樣VOCs 結果之相關性分析D-1
參考文獻 References
Bay Area Air Quality Management District, “Flare monitoring at
petroleum refineries-2006 archive data,” available at http://hank.
baaqmd.gov/enf/flares/2006/index_2006.htm
Benjamin, M., Sudol, M., Bloch, L., and Winer, A. M., “Low-emitting
urban forests: A taxonomic methodology for assigning isoprene and
monoterpene emission rate,” Atmospheric Environment, 30, 1437-
1452, 1996.
Carter, W.L., “Development of ozone reactivity scales for volatile organic
compounds,” Journal of Air & Waste Management Association, 44,
881-899, 1994.
Carter, W.L., “Updated maximum incremental reactivity scale and
hydrocarbon bin reactivities for regulatory applications,” California
Air Resources Board Contract , 07-339, 2010.
Chang, C.C., Lo, J.G., and Wang, J.L., “Assessment of reducing ozone
forming potential for vehicles using liquefied petroleum gas as an
alternative fuel,” Atmospheric Environment, 35, 6201-6211, 2001.
Chiang, H.L., Tsai, J.H., Chen, S.Y., Lin, K.H., and Ma, S.Y., “VOC
concentration profiles in an ozone non-attainment area: A case study
in an urban and industrial complex metroplex in southern Taiwan,”
Atmospheric Environment, 41(9), 1848-1860, 2007.
Dimitrades, B., “Scientific basis for the VOC reactivity issues raised by
Section 183(e) of the Clean Air Act Amendments of 1990,” Journal
of Air & Waste Management Association, 46(10), 963-970, 1996.
Dodge, M. C., “Combined use of modeling techniques and smog chamber
data to derive ozone-precursor relationships,” Proceedings of
international conference on photochemical oxidant pollution and its
control, Vol.2, EPA/600/3-77-001b, pp.881-889, 1977.
Doskey, P.V., Fukui, Y., and Sultan, M., “Source profile for nonmethane
organic compounds in the atmosphere of cairo,” Journal Air &
Waste management Association, 49, pp:814-822, 1999.
Edwards W. C., “VOC emissions from major organic chemical plants in
Canada,” 84th Annual. Meeting, Air & Waste management
Association, B.C, Columbia, 1991.
Fishman, C.E., and Watson, J.C., “Distribution of tropospheric ozone
determined from satellite data,” Journal of Geophysical Research, 95,
3599-3617, 1990.
International Agency for Research of Cancer, “IARC monographs on the
evaluation of carcinogenic risks to humans,” Agents classified by the
IARC monographs, Vol.1-100, 2011.
Jenkin, M.E. and Clemitshaw, K.C., “Ozone and other secondary
photochemical pollutants chemical processes governing their
formation in the planetary boundary layer,” Atmospheric
Environment, 34, 2499-2527, 2000.
Kelly, T.J.,“Air pollutant monitoring and health risk assessment in Allen
Country-Lima,"85th Annual Meeting and Exhibition of Air &
Waste management Association, Kansas City, MO, 1992.
Lai, C.H., Chen, K.S., Ho, Y.T., Chou, M.S.,“Characteristics of C2-C5
hydrocarbons in the air of urban Kaohsiung, Taiwan,"Atmospheric
Environment, 38,1997-2011, 2004.
Levaggi D. A. and Sia W., “Gaseous toxics monitoring in the Sia
Francisco Bay Area: a Review and Assessment of Four years of
Data,” 84th Annual Meeting of Air & Waste management
Association, Vancouver, B.C., Columbia, 1991.
Lin, T.Y., Sree, U., Tseng, S.H., Chiu, K.H., Wu, C.H., and Lo,
J.G.,“Volatile organic compound concentrations in ambient
air of Kaohsiung petroleum refinery in Taiwan,"Atmospheric
Environment, 38(25), 4111-4122, 2004.
Molhave, L., “Volatle organic compounds, indoor air quality and health,”
Indoor Air, Vol.1, 357-376, 1992.
Pires, J.C.M., Pereira, M.C., Alvim-Ferraz, M.C.M., and Martins, F.G.,
“Identification of redundant air quality measurements through the
use of principal component analysis,” Atmospheric Environment, 43,
3837-3842, 2009.
Scheff P. A. and Porter J. A., “Improvement of VOC source fingerprints
for vehicles and refineries,” 84th Annual Meeting of Air & Waste
management Association, 16-21, Canada, 1991.
South Coast Air Quality Management District,“Control of emissions
from refinery flares,"Final staff report for proposed amended rule
1118, 2005.
Texas Commission on Environmental Quality, “Variable industrial VOC
emissions and their impact on ozone formation in the Houston
Galveston Area,” 2004.
U.S. Environmental Protection Agency,“1990 Amendments to the Clean
Air Act,"http://www.epa.gov/air/caa/index.html (accessed 20 May
2011).
Wang, H.K., Huang, C.H., Chen, K.S., Peng, Y.P., and Lai, C.H.,
“Measurement and source characteristics of carbonyl compounds in
the atmosphere of Kaohsiung City, Taiwan,” Journal of Hazardous
Material, 179, 1115-1121, 2010.
行政院環保署,『揮發性有機物空氣污染管制及排放標準』,空氣污
染防制0162 號法規,2011。
甯蜀光,『石化工業區有害空氣污染物管理系統建置與減量策略研
究』,行政院國科會專題研究計畫(子計畫四),2010。
蔡協宏,『低層大氣中臭氧與碳氫化合物之關連性解析』,逢甲大學
環境工程與科學所碩士論文,2004。
謝祝欽,吳泄澤,游榮華,『建立本土化樹種BVOCS 排放係數與推
估公式之研究』,第八屆氣膠科技國際研討會,2000。
行政院環保署,『台灣地區污染源排放清冊(Taiwan Emission Data
System 7.0 , TEDS 7.0)』,空氣品質模式支援中心,2009。
江森雄,『石化工業區揮發性有機氣體改善管理之研究-以頭份工業
區為例』,中華大學工業工程與管理研究所碩士論文,2000。
劉乃維,『開徑式傅立葉轉換紅外光譜儀做為揮發性有機物量測之應
用』,國立高雄海洋科技大學海洋環境工程所碩士論文,2006。
經濟部能源局,『車輛油耗指南- 99 年測試合格銷售車型』,2011。
李國璋,『應用開徑式UV-DOAS 量測高雄國際機場航道下環境空氣
品質之研究』,國立中山大學環境工程研究所碩士論文,2009。
賴嘉祥,『高雄市大氣中C2-C15 揮發性有機物特徵之時空分佈及其受
體模式之分析』,國立中山大學環境工程研究所碩士論文,2004。
許逸群,『臭氧高濃度區揮發性有機物特徵與排放源關聯性研究』,國立成功大學環境工程研究所博士論文,2000。
吳立言,『高雄地區固定污染源揮發性有機物指紋及光化反應潛勢之研
究』,國立中山大學環境工程研究所碩士論文,2002。
陳佳伶,『石化工業區VOCs 物種及排放量推估』,輔英科技大學環境
工程與科學系碩士論文,2007。
袁中新,羅卓卿,黃明和,『油品儲運站鄰近空氣中揮發性有機污染
物分佈特性研究』,第十八屆空氣污染控制技術研討會,2001。
羅卓卿,『油品儲運站鄰近空氣中揮發性有機污染物之特性研究』,國
立中山大學環境工程研究所碩士論文,2001。
廖琦峰,『工業區有害空氣污染物排放與影響評估方法之研究』,國立
成功大學環境工程研究所碩士論文,2005。
蔡俊鴻,『光化學二次污染現象與機制: 固定源排放揮發性
有機物光化反應潛勢指標研究』,行政院國科會專題研究計畫(子
計畫一),1998。
何俊杰,『石化工業區揮發性有機物總量管制』,工業污染防制第71
期,1999。
許逸群,『中部雲嘉南空品區臭氧污染成因調查研究分析:固定源及
面源VOC排放推估及光化潛勢研究』,行政院國科會專題研究計
畫(子計畫三),2007。
吳義林,林清河,『廢氣燃燒塔與鍋爐之揮發性有機物排放係數建
置』,行政院國科會專題研究計畫,2007。
袁中新,『高污染空品區有害空氣污染物本土暴露特性分析與資料庫
建置:高污染空品區室外空氣污染熱區解析與暴露特性分析』,
行政院國科會專題研究計畫,2006。
行政院環保署,『固定污染源設置與操作許可證管理辦法』,空氣污
染防制0040 號法規,2007。
行政院環保署,『固定污染源空氣污染物排放標準』,空氣污染防制
0070 號法規,2011。
行政院環保署,『固定污染源空氣污染物連續自動監測設施管理辦
法』,空氣污染防制0570 號法規,2003。
石濤,『環境化學』,鼎茂出版社,2009。
鐘蒲生等,『煉油設備操作實務(上、下冊) 』,中國石油公司訓練所,
第一版,2000。
行政院環保署,『有害空氣污染物管制規範及排放標準研定計畫』,
行政院環保署研究計畫,1995。
錢立行,『高雄元宵節高空煙火施放對環境空氣品質之影響』,國立中
山大學環境工程研究所碩士論文,2010。
倪國敦,『高高屏地區臭氧趨勢分析與氣象因子相關性之探討』,國立
中山大學環境工程研究所碩士論文,2010。
楊峰杰,『以因子分析法探討高雄市大氣中揮發性有機物之類別及來
源』,國立中山大學環境工程研究所碩士論文,2005。
王根樹,『汽油及液化石油氣(LPG)引擎排放污染物比較分析之研
究』,液化石油氣加氣站協會期末報告,2004。
蔡信行,『石油產品及其應用』,中國石油股份有限公司,2000。
羅俊光,『自動化氣相層析質譜系統分析ppbv級之臭氧前趨物與甲基
第三丁基醚及交通污染源指標之應用』,行政院國科會專題研究
計畫,2003。
洪正宗,蕭秀雄,黃登祥,陳正文,陳國棟,『煤組油C9中1.2.4-三甲基苯之分離及應用』,石油季刊,36(3),pp.27~33,2000。
劉育甫,『高雄沿海地區臭氧及其前趨物垂直剖面分佈特性及相關性
分析探討』,國立中山大學環境工程研究所碩士論文,2010。
周明顯、樓基中、袁中新,『高雄市臭氧生成前趨物控制及減量策略
研擬』,高雄市政府環境保護局,2001。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code