Responsive image
博碩士論文 etd-0902111-180129 詳細資訊
Title page for etd-0902111-180129
論文名稱
Title
應用熱間擠製加工對於梯度機械性質材料之製作
Manufacturing of Gradient Mechanical Properties Materials Using Hot Extrusion Processes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
122
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-28
繳交日期
Date of Submission
2011-09-02
關鍵字
Keywords
傾斜角、梯度微觀組織、熱間擠製、有限元素、硬度試驗
Finite element analysis, Gradient micro-structure, Inclination angle, Hardness test, Hot extrusion
統計
Statistics
本論文已被瀏覽 5647 次,被下載 1021
The thesis/dissertation has been browsed 5647 times, has been downloaded 1021 times.
中文摘要
本文針對鋁合金及鎂合金棒材之熱間擠製進行解析及實驗之研究。藉由模具傾斜角之製作使擠錠在模具內橫斷面之流速不均及材料之應變、應變率分佈不同。在模具中增添一平行道口及傾斜角之設計,使得表層部位微結構晶粒變小,因而獲得表面硬度較高之材料。本研究之目的為以不同模具之傾斜角度進行擠錠之熱間擠製加工,用以製作不同梯度機械性質之材料。首先,進行擠製模具之不同傾斜角設計,運用有限元素法在模具之軸承面出口處分析溫度、等效應變及等效應變率分佈情形。另外亦進行擠製實驗,鎂合金經過擠製後以光學顯微鏡位於成品之橫斷面處作金相觀察及硬度試驗,得知模具之傾斜角為15°時可得到較小之晶粒及較高之硬度,在中心範圍之晶粒大小為17.2μm,而硬度為68.2 HV;在邊緣處之晶粒大小為4.1μm,而硬度為83.8HV。
Abstract
This study focused on analysis and experiment of hot extrusion of aluminum and magnesium alloys, an extrusion die with an inclination angle leads to non- uniform velocity distribution at the cross-section of the die, and results in different strain and strain rate distributions. This kind of design can make the grain size at the material surface smaller and get a material with larger surface hardness. This study aims to conduct hot extrusion with different die inclination angles, and obtain a material with gradient micro-structures. At first, die with different inclination angles are designed, and the temperature at the die exit and effective strain, effective strain rate distributions are discussed using the finite element analysis. At last, aluminum and magnesium extrusion experiments are conducted and the micro-structures of the materials are observed to understand the effects of the die inclination angles at 15 degrees on the grain size distribution and hardness test at the cross-section of the material. The grain size is about 17.2μm at around center of the cross-section and hardness is about 68.2HV. The smallest grain size is 4.1μm at the edge of the cross-section and the highest hardness is 83.8HV.
目次 Table of Contents
摘要 xiii
Abstract xiv
第一章 緒論 1
1-1 前言 1
1-2 擠製加工簡介 2
1-2-1 直接擠製法 2
1-2-2 間接擠製法 2
1-2-3 擠製加工條件對擠製性能之影響 4
1-3 文獻回顧 5
1-3-1 不同加工方式製作具有梯度之機械性質材料 5
1-3-2 不同加工方式對材料之晶粒細化影響 5
1-3-3 不同加工方式對梯度複合材料之影響 6
1-4 本論文之研究目的與架構 7
第二章 鋁合金A6061有限元素分析 9
2-1 鋁合金A6061熱間壓縮試驗 9
2-2 擠製分析之模具設計及參數設定 14
2-3 擠製負載分析 15
2-4 橫斷面半徑與模具位置之關係 16
2-5 不同傾斜角之溫度分析 17
2-5-1 不同傾斜角位於橫斷面半徑(r)之溫度分佈 17
2-5-1 不同傾斜角位於軸承面(x=0mm)出口處之溫度分佈 19
2-6 不同傾斜角之等效應變率分析 20
2-6-1 不同傾斜角位於橫斷面半徑(r)之等效應變率分佈 20
2-6-2 不同傾斜角位於軸承面(x=0mm)出口處之等效應變率分佈 21
2-7 不同傾斜角之等效應變分析 22
2-7-1 不同傾斜角位於橫斷面半徑(r)之等效應變分佈 22
2-7-2 不同傾斜角位於軸承面(x=0mm)出口處之等效應變分佈 24
第三章 鎂合金AZ31有限元素分析 25
3-1 擠製分析之模具設計及參數設定 25
3-2 不同傾斜角位於軸承面出口處(x=0mm)之模擬分析 28
3-2-1 傾斜角5°之模擬分析 28
3-2-2 不同傾斜角之模擬分析 29
3-3 鋁合金及鎂合金解析結果之比較 32
3-4 鎂合金之不同擠製參數之模擬分析 35
3-4-1 不同傾斜角之模擬分析 36
3-4-2 不同傾斜角位於橫斷面半徑(r)之等效應變及等效應變率分析 37
3-4-3 不同的平行部長度(L1)及不同的傾斜角長度(L2)之比較 40
3-4-4 不同L1及L2位於橫斷面半徑(r)之等效應變及等效應變率分析 41
3-4-5 不同的擠製比之模擬分析 43
第四章 擠製加工分析及實驗 44
4-1 實驗規劃 44
4-1-1 擠製加工實驗 45
4-1-2 金相觀察規劃 46
4-2 鋁合金之實驗結果 49
4-2-1 鋁合金成分及特性 49
4-2-2 鋁合金熱處理之基本概論 50
4-2-3 鋁合金解析值與實驗值荷重之比較 52
4-2-4 鋁合金不同傾斜角之前段小擠錠(B1)與成品(P1)之金相觀察 55
4-2-5 鋁合金不同傾斜角之前段小擠錠(B1)與成品(P1)之晶粒量測 62
4-2-6 鋁合金不同傾斜角之後段大擠錠(B2)與成品(P2)之金相觀察 66
4-2-7 鋁合金不同傾斜角之後段大擠錠(B2)與成品(P2)之晶粒量測 74
4-3 鎂合金之實驗結果 77
4-3-1 鎂合金成分及特性 77
4-3-2 鎂合金變形之基本定義 79
4-3-3 鎂合金解析值與模擬值荷重之比較 79
4-3-4 鎂合金不同傾斜角之金相觀察 81
4-3-5 鎂合金不同角度之晶粒量測 89
4-3-6 鎂合金不同傾斜角之硬度試驗及硬度殘留面積分析 93
第五章 結論 101
5-1 鋁合金之有限元素解析及實驗 101
5-2 鎂合金之有限元素解析及實驗 101
5-3 鋁合金與鎂合金之解析結果比較 102
5-4 鎂合金之不同擠製參數結果比較 102
5-5 未來展望 103
參考文獻 104
參考文獻 References
[1] 王文樑,“鋁及鋁合金之擠型技術”,金屬工業發展中心工程師,1985。
[2] N. Takatshji, “Fundamental understandings of extrusion process”, Journal of the JSTP, Vol.49, No.569, 2008, pp.507-511.
[3] Y. Chen, Q. Wang, J. Peng, C. Zhai, W. Ding, “ Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy”, Journal of Mechanical Processing Technology, Vol.182, 2007, pp.247-267.
[4] C. Yongjun, W. Qudong , P. Jianguo, Z. Chunquan, “Improving the mechanical properties of AZ31 Mg alloy by high ratio extrusion”, Materials Science Forum, Vols.503-504, 2006, pp.865-870.
[5] T. Murai, S. Matsuoka, S. Miyamoto, Y. Oki, “Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions”, Journal of Mechanical Processing Technology, Vol.141, 2003, pp.207-212.
[6] T. Hasegawa, “Current trends of implant produce development in orthopedics”, Journal of the JSTP, Vol.51, No.590, 2010, pp.177-181.
[7] S. Kurosu, K. Yamanaka, H. Matsumoto, N. Nomura, A. Chiba, “Hot semi-closed die forging of Ni-free Co-29Cr-6Mo alloy into prototype artificial hip joint stem”, Journal of the JSTP, Vol.50, No.578, 2009, pp.256-260.
[8] E. Onodera, S. Kurosu, Y. Li, H. Matsumoto, A. Chiba, “Hot forging process of artificial hip joint made of Ni-free Co-29Cr-6Mo-0.12N alloy by means of intelligent hot forging processing method”, Journal of the JSTP, Vol.51, No.590, 2010, pp227-232.
[9] F. Masanao, O. Takuma, L. Shinichirou, Y. Hiroaki, I. Sachihiro, “Developmant of strengthening and functionally grading forging technique using deformation-induced VC precipitation”, The Technology of Plasticity, 2010, pp.155-156.
[10] L.L. Chang, Y.N. Wang, X. Zhao, J.C. Huang, “Microstructure and mechanical properties in an AZ31 magnesium alloy sheet fabricated by asymmetric hot extrusion”, Materials Science and Engineering A, Vol.496, 2008, pp.512-516.
[11] S. Mizunuma, “Large-strain characteristics and grain refinement in torsion extrusion”, Journal of the JSTP, Vol.50, No.578, 2009, pp.186-191.
[12] T. Morimoto, I. Chikushi, H. Ban, M. Yamada, T. Hanabusa, “Thermo mechanical processing for fine ferrite grain crust wire rod with high fatigue limit”, Journal of the JSTP, Vol.50, No.578, 2009, pp.221-226.
[13] W. Libura, “The strain gradient on microstructure and properties of extruded aluminum extrusion alloys”, Proceedings of Fifth International Aluminum Extrusion Technology Seminar, Vol1, Chicago, 1992, pp.485~494.
[14] H.M. Zhang, Y.J. Su, G.J. Huang, D. Li, “Research about big grain 6061-T6 aluminum alloy rod center”, Light Alloy Fabrication Technology, Vol.33, No.8, 2005, pp.34-39.
[15] W. Zhang, J. Xie, C. Wang, “Fabrication of multilayer 316L/PSZ gradient composite pipes by Means of multi-billet extrusion”, Materials Science and Engineering A, Vol.382, 2004, pp.371-377.
[16] Y.P. Song, X.M. Mao, Q.M. Dong, L.D. Tang, Z.Y. Ouyang and H.Y. Liang, “Microstructure and properties of WCp reinforced ferrous gradient composites”, Key Engineering Materials, Vols.336-338, 2007, pp.2605-2608.
[17] C.G. Kang, H.C. Kwon, “Finite element analysis considering fracture strain of sheath material and lubricant in extrusion process of Al/Cu clad composites and its experiment investigation”, International Journal of Mechanical Sciences, Vol.44, 2002, pp.247-267.
[18] C.G. Kang, Y.J. Jung, H.C. Kwon , “Finite element simulation of die design for hot extrusion process of Al/Cu clad composite and its experimental investigation ”, Journal of Mechanical Processing Technology, Vol.124, 2002, pp.49-56.
[19] K.A. Khor, Y.M. Gu, “Effects of residual stress on the performance of plasma sprayed functionally graded ZrO2/NiCoCrAlY coatings”, Materials Science and Engineering A, Vol.277, 2000, pp.64-76.
[20] S. Chen, L. Wang, X. Xie, Y. Zhang, “Preparation and characterization of multilayered Mullite/Mo functionally gradient materials”, Key Engineering Materials, Vols.368-372, 2008, pp.1866-1868.
[21] 涂仕明, “鎂合金管板熱間擠製之研究”,國立中山大學機械與機電工程學系碩士論文,2009。
[22] J. Zhang, Z. Fan, Y.Q. Wang, B.L. Zhou,“Micro structural development of Al-15wt.%Mg2Si in situ composite with mischmetal addution”, Materials Science and Engineering A, Vol.281, 2000, pp.104-112.
[23] 張文成,“鋁及鋁合金之應用”,工業材料研究所副研究員,1985 。
[24] 金重勳,“熱處理”,復文書局,2004,pp.483-485。
[25] M. Cabibbo, S. Spogarelli, E. Evangelista, “A TEM investigation on the effect of semisolid forming on precipitation processes in an Al-Mg-Si alloy”, Materials Characterization, Vol.49, 2003, pp.193-202.
[26] L. Zhen, W.D. Fei, S.B. Kang, H.W. Kim, “Preciptaion behaviour of Al-Mg-Si alloys high silicon contect”, Journal of Materials Science, Vol.32, 1997, pp.1895-1902.
[27] M. Murayama, K. Hono, “Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys”, Published in Acta mater, Vol.47, No.5, 1999, pp.1537-1548.
[28] ASTM E112-96(Reapproved 2004)E2, “Standard test methods for determining average grain size”, ASTM information, 2004, pp.13-14.
[29] Http://asia.matweb.com/index.asp.
[30] ASM Speciality Handbook, “Magnesium and magnesium alloys”, ASM International, 1999, pp.37.
[31] B.L. Mordike, T.Ebert,“Magnesium properties-application-protential”, Materials Science and Enginneering A, Vol.302, 2001, pp.37-45.
[32] 黃正榮,“台灣鎂合金成形產業關鍵成功因素之再探”,碩士論文國立清華大學,2005。
[33] 蔡木村,“機械冶金”,金華科技圖書股份有限公司,1990。
[34] R. E. Reed-Hill, “Physical Metallurgy Principles”, metallurgy CHP17, 1974, pp.539.
[35] M.R. Barnett, “Twinning and the ductility of magnesium alloys Part I “Tension” twins”, Materials Science and Engineering A, Vol.464, 2007, pp.1-7.
[36] M.R. Barnett, “Twinning and the ductility of magnesium alloys Part II “Contraction twins”, Materials Science and Engineering A, Vol.464, 2007, pp.8-16.
[37] N. Stanford, M.R. Barnett, “Effect of particles on the formation of deformation twin in a magnesium-based alloy”, Materials Science and Engineering A, Vol.516, 2009, pp.226-234.
[38] A. Jager, P. Lukac, V. Gartnerova, J. Haloda, M. Dopita, “Influence of annealing on the microstructure of commercial Mg alloy AZ31 after mechanical forming”, Materials Science and Engineering A, Vol.432, 2006, pp.20-25.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code