Responsive image
博碩士論文 etd-0902112-105617 詳細資訊
Title page for etd-0902112-105617
論文名稱
Title
探討由香芹酚和異丙酚在人類正常細胞與非正常細胞中活性氧化物、鈣離子及蛋白酶-3參與細胞凋亡的活化機轉
Effects of carvacrol and 2,6-diisopropylphenol (propofol) on reactive oxygen species (ROS)-, calcium (Ca2+)- and caspase-3-associated apoptosis in human normal cells and non-normal cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
168
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-08-31
繳交日期
Date of Submission
2012-09-02
關鍵字
Keywords
蛋白酶-3、鈣離子、活性氧化物、細胞週期、細胞凋亡、異丙酚、香芹酚
Apoptosis, cell cycle, ROS, Ca2+, Caspase-3, Propofol, Carvacrol
統計
Statistics
本論文已被瀏覽 5723 次,被下載 368
The thesis/dissertation has been browsed 5723 times, has been downloaded 368 times.
中文摘要
天然精油香芹酚(carvacrol)或麻醉劑異丙酚(propofol)對於人類正常細胞或非正常細胞中,細胞存活率、細胞週期分佈、活性氧化物,細胞內鈣離子濃度和蛋白酶-3-參與的細胞凋亡效應還不清楚。在此研究中,所使用的細胞株為人類牙齦纖維母細胞(human gingival fibroblast, HGF),人類口腔癌細胞(human oral cancer cell, OC2)和人類腦神經瘤細胞(human glioblastoma cell, DRTBG-05MG, HGB)。本研究實驗方法包括以水溶性四唑鹽(water soluble tetrazolium salt-1, WST-1)檢測細胞存活率;以膜聯蛋白V (annexin V)/碘化丙啶(propidium iodide, PI)偵測細胞凋亡;以PI染色檢測細胞週期分佈;以膜滲透探針dichlorofluorescein diacetate (DCFH-DA)或hydroethidine (HE)偵測活性氧化物的改變;以流式細胞儀來分析細胞凋亡、細胞週期分佈和活性氧化物的表現;以鈣螢光染料fura-2測量細胞內鈣離子濃度;並以西方墨點法偵測蛋白酶-3的活化。
香芹酚在200 μM至800 μM的濃度依賴效應下造成OC2或HGB細胞死亡, 1,000 μM的香芹酚幾乎殺光OC2或HGB細胞,但在HGF細胞,200 μM 至800 μM的香芹酚並沒有顯著殺死細胞且1,000 μM的香芹酚只降低約63%的細胞存活率。另一方面,異丙酚具有類似香芹酚的細胞毒殺情形,異丙酚在300 μM至600 μM的濃度依賴效應下能造成OC2或HGB細胞死亡而700 μM的異丙酚能幾乎殺死OC2或HGB細胞,但在HGF細胞中,300-600 μM的異丙酚並不會殺死OC2或HGB細胞且700 μM的異丙酚只降低約62%的細胞存活率。香芹酚(200、400或600 μM)或異丙酚(300、400或500 μM)能誘導OC2或HGB細胞凋亡,增加活性氧化物產生,細胞週期阻滯且活化蛋白酶-3。蛋白酶-3抑制劑(DEVD-CHO)能抑制香芹酚或異丙酚誘發的細胞凋亡。
此外,香芹酚在400至1,000 μM的濃度依賴效應下能誘發OC2或HGB細胞鈣離子濃度上升且在去除胞外鈣離子的情形下,細胞內鈣離子的濃度會下降。但在HGF細胞中,1,000 μM的香芹酚並沒有誘發立即性的鈣離子濃度上升。類似的情形也發生在異丙酚,異丙酚在400至1,000 μM的濃度依賴效應下能誘發OC2或HGB細胞鈣離子濃度上升且在去除細胞外鈣離子的情形下,細胞內鈣離子的濃度會下降。但在HGF細胞中,1,000 μM的異丙酚也沒有誘發立即性的鈣離子濃度上升。再者,香芹酚的細胞毒殺效應並不會被細胞內鈣離子螯合劑(BAPTA-AM)降低,卻能部分降低異丙酚的細胞毒殺效應,此外,BAPTA-AM也能部分降低異丙酚對OC2或HGB細胞凋亡的影響。
最後,此研究也探討香芹酚或異丙酚對於OC2和HGB細胞鈣離子上升的機制。由香芹酚或異丙酚誘發細胞外鈣離子內流,不受L-型鈣離子通道抑制劑(L-type voltage gated Ca2+ channel, nifedipine)、鈣庫調控的鈣離子通道抑制劑 (store-operated Ca2+ channel, econazole 或SK&F96365)及蛋白質激酶C (protein kinase C, PKC)活化物 phorbol myristate acetate (PMA)所影響,卻被蛋白質激酶C抑制劑GF109203X抑制。在不含鈣離子的細胞培養液中,先對細胞處以內質網鈣離子幫浦抑制劑(thapsigargin, TG 或 2,5-di-tert-butylhydroquinone, BHQ),再加入香芹酚或異丙酚後,細胞內的鈣離子濃度並不會上升;反之,先加入香芹酚或異丙酚,再加入內質網鈣離子幫浦抑制劑也出現類似的情形。另外,磷脂酶C (phospholipase C, PLC) 抑制劑U73122也能完全抑制香芹酚或異丙酚所誘發的細胞內鈣離子濃度。
總結這項研究,首先,在HGF細胞中,香芹酚(200-800 μM)或異丙酚(300-600 μM)並沒有引起細胞內鈣濃度的上升且也沒有造成大量細胞死亡。其次,在OC2或HGB細胞中,香芹酚能誘發細胞內鈣濃度的升高且造成活性氧化物參與、鈣離子非依賴和蛋白酶-3-相關路徑的細胞凋亡。第三,在OC2或HGB細胞中,異丙酚能誘發細胞內鈣濃度的升高且造成活性氧化物、鈣離子和蛋白酶-3-相關路徑的細胞凋亡。最後,在 OC2或HGB細胞中,香芹酚或異丙酚誘發鈣離子濃度上升是經由磷脂酶C、蛋白質激酶C依賴途徑和內質網釋放所引起;同時細胞外鈣離子內流則經由非鈣庫調控的鈣離子通道所造成。
Abstract
The effect of the natural essential oil carvacrol or the anesthetic propofol on cell viability, cell cycle distribution, reactive oxygen species (ROS), intracellular free Ca2+ concentrations ([Ca2+]i) and caspase-3-associated apoptosis in human normal cells or non-normal cells is unclear. Human gingival fibroblasts (HGF), human oral cancer cell line (OC2) and human glioblastoma cell line (DRTBG-05MG, HGB) were used in this study. Cell viability was measured by detecting reagent water soluble tetrazolium salt-1 (WST-1). Apoptosis was detected by Annexin V/propidium iodide (PI) staining, cell cycle distribution was detected by PI staining, and ROS was detected by membrane-permeable probe dichlorofluorescein diacetate (DCFH-DA) or hydroethidine (HE) staining. Apoptosis, cell cycle distribution and ROS were analyzed by flow cytometry. The Ca2+-sensitive fluorescent dye fura-2 was applied to measure [Ca2+]i. Caspase-3 expression was detected by western blotting.
Carvacrol at 200-800 μM decreased the cell viability of OC2 or HGB cells in a concentration-dependent manner and 1,000 μM carvacrol almost killed all OC2 or HGB cells, but in HGF cells, 200-800 μM carvacrol did not significantly kill cells and 1,000 μM carvacrol decreased only about 63% of cell viability. Similarly, propofol at concentrations between 300 and 600 μM decreased the cell viability of OC2 or HGB cells in a concentration-dependent manner and 700 μM propofol almost killed all OC2 or HGB cells, but in HGF cells, 300-600 μM propofol did not significantly kill cells and 700 μM propofol decreased about 62% of cell viability. In OC2 or HGB cells, carvacrol (200 μM, 400 μM or 600 μM) or propofol (300 μM, 400 μM or 500 μM) induced apoptosis, increased ROS production, evoked cell cycle arrest and activated caspase-3. The caspase-3 inhibitor (DEVD-CHO) partially decreased the apoptotic effect induced by carvacrol or propofol.
On the other hand, in OC2 or HGB cells, carvacrol at concentrations between 400 μM and 1,000 μM induced a [Ca2+]i rise in a concentration-dependent manner and the signal was reduced by removal of extracellular Ca2+. In HGF cells, carvacrol at 1000 μM did not induce immediate [Ca2+]i rises in Ca2+-containing or Ca2+-free medium. Similarly, propofol at concentrations between 400 μM and 1,000 μM induced a [Ca2+]i rise in a concentration-dependent manner in OC2 or HGB cells, but not in HGF cells. This cytotoxic effect was not reversed in carvacrol-treated groups, but was partially reversed in propofol-treated groups when cytosolic Ca2+ was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid/acetoxy methyl (BAPTA-AM) in OC2 or HGB cells. The apoptotic effect of propofol was also partially decreased by BAPTA-AM treatment in OC2 and HGB cells.
In OC2 and HGB cells, carvacrol- or propofol-induced Ca2+ signal was not altered by L-type voltage-gated Ca2+ channel blocker nifedipine, store-operated Ca2+ channel blocker econazole or SK&F96365) and protein kinase C (PKC) activator phorbol myristate acetate (PMA), but was inhibited by PKC inhibitor GF109203X. When extracellular Ca2+ was removed, incubation with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished carvacrol- or propofol-induced [Ca2+]i rises. Incubation with carvacrol or propofol also abolished TG or BHQ-induced [Ca2+]i rises. Inhibition of phospholipase C (PLC) with U73122 abolished carvacrol- or propofol-induced [Ca2+]i rises.
Together, first, in HGF cells, carvacrol (200-800 μM) or propofol (300-600 μM) did not induce [Ca2+]i rises and cell death. Second, in OC2 or HGB cells, carvacrol induced [Ca2+]i rises and cell death that might involve ROS- and caspase-3-associated apoptosis. Third, in OC2 or HGB cells, propofol induced [Ca2+]i rises and cell death that might involve ROS-, Ca2+- and caspase-3-associated apoptosis. Lastly, in OC2 or HGB cells, carvacrol or propofol induced [Ca2+]i rises by inducing PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive, non store-operated Ca2+ channels.
目次 Table of Contents
摘要 i
Abstract iii
List of abbreviations vi
1. Introduction 1
1.1. Alkyl phenol group. 1
1.2. Carvacrol 2
1.3. Propofol (2,6-diisopropylphenol) 3
1.4. The characteristics of apoptosis 4
1.5. The apoptotic pathway 5
1.6. Cell cycle and the relationship between cell cycle and apoptosis 7
1.7. ROS and the role of ROS in apoptosis 10
1.8. Ca2+ signaling and its role in apoptosis 12
1.9. Caspase family in apoptosis 13
2. Aim 15
3. Materials and methods 16
3.1. Chemicals 16
3.2. Cell culture 16
3.3. Solutions 17
3.4. [Ca2+]i measurements 18
3.5. Cell viability assays 19
3.6. Alexa ®Flour 488 annexin V/propidium iodide (PI) staining for apoptosis 20
3.7. Cell cycle distribution by PI staining 21
3.8. Measurements of intracellular ROS levels 22
3.9. Assessment of caspase-3 activation by Western immunoblotting 23
3.10. Statistics 24
4. Results 26
Effects of carvacrol/propofol on cell viability of HGF, OC2 or HGB cells 26
4.1. Carvacrol decreased the cell viability in HGF, OC2 or HGB cells 26
4.2. Propofol decreased the cell viability in HGF, OC2 or HGB cells 26
Effects of carvacrol/propofol on apoptosis of HGF, OC2 or HGB cells 26
4.3. Carvacrol induced apoptosis in HGF, OC2 or HGB cells 27
4.4. Propofol induced apoptosis in HGF, OC2 or HGB cells 27
Effects of carvacrol/propofol on cell cycle distribution of HGF, OC2 or HGB cells 28
4.5. Carvacrol affected cell cycle distribution in HGF, OC2 or HGB cells 28
4.6. Propofol affected cell cycle distribution in HGF, OC2 or HGB cells 29
Effects of carvacrol/propofol on ROS production of HGF, OC2 or HGB cells 29
4.7. Carvacrol induced ROS production in HGF, OC2 or HGB cells 29
4.8. Propofol induced ROS production in HGF, OC2 or HGB cells 30
Effects of carvacrol/propofol on [Ca2+]i of HGF, OC2 or HGB cells 30
4.9. Carvacrol evoked [Ca2+]i in HGF, OC2 or HGB cells 30
4.10. Propofol evoked [Ca2+]i in HGF, OC2 or HGB cells 32
The relationship between chelating Ca2+ with BAPTA-AM and carvacrol/propofol-induced cell death in OC2 or HGB cells 33
4.11.1. Chelating Ca2+ with BAPTA-AM did not reverse carvacrol-induced cell death in OC2 or HGB cells 33
4.11.2. Chelating Ca2+ with BAPTA-AM partially reversed propofol-induced cell death in OC2 or HGB cells 34
The relationship between chelating Ca2+ with BAPTA-AM and propofol-induced apoptosis in OC2 or HGB cells 35
4.11.3. Chelating Ca2+ with BAPTA-AM partially inhibited propofol-induced apoptosis in OC2 or HGB cells 35
The mechanism of carvacrol/propofol-induced [Ca2+]i rises in OC2 or HGB cells 35
4.11.4. To confirm that carvacrol- or propofol-induced [Ca2+]i rises involved Ca2+ influx in OC2 or HGB cells 35
4.11.5. Modulations of carvacrol- or propofol-induced [Ca2+]i rises in OC2 or HGB cells 36
4.11.6. Internal stores of carvacrol- or propofol-induced [Ca2+]i rises in OC2 or HGB cells 37
4.11.7. The role of PLC on carvacrol- or propofol-induced [Ca2+]i rises in OC2 or HGB cells 38
Effects of carvacrol/propofol on caspase-3 activation of OC2 or HGB cells 39
4.12. Carvacrol induced caspase-3 activation in OC2 or HGB cells 39
4.13. Propofol induced caspase-3 activation in OC2 or HGB cells 39
The relationship between caspase-3 inhibitor (DEVD-CHO) and carvacrol/propofol-induced cell death in OC2 or HGB cells 40
4.14.1. DEVD-CHO partially reversed carvacrol-induced death in OC2 or HGB cells 40
4.14.2. DEVD-CHO partially reversed propofol-induced death in OC2 or HGB cells 40
The relationship between caspase-3 inhibitor (DEVD-CHO) and carvacrol/propofol-induced apoptosis in OC2 or HGB cells 41
4.14.3. DEVD-CHO partially inhibited carvacrol-induced apoptosis in OC2 or HGB cells 41
4.14.4. DEVD-CHO partially inhibited propofol-induced apoptosis in OC2 or HGB cells 40
5. Conclusion 42
6. Discussion 43
List of figures
Figure 1.1. Alkyl phenol group including carvacrol or propofol 54
Figure 1.2. The features of cell death by apoptosis 55
Figure 1.3. Typical receptor-mediated and mitochondria-mediated apoptotic pathways 56
Figure 1.4. The overview of cell cycle 57
Figure 1.5. The apoptotic pathway induced by ROS or [Ca2+] 58
Figure 2.1. Effect of carvacrol on cell viability in HGF, OC2 or HGB cells 59
Figure 2.2. Effect of propofol on cell viability in HGF, OC2 or HGB cells 60
Figure 3.1. Carvacrol-induced apoptosis in HGF, OC2 or HGB cells (dot plots) 61
Figure 3.2. Carvacrol-induced apoptosis in HGF, OC2 or HGB cells (bar plots) 62
Figure 3.3. Propofol-induced apoptosis in HGF, OC2 or HGB cells (dot plots) 63
Figure 3.4. Propofol-induced apoptosis in HGF, OC2 or HGB cells (bar plots) 64
Figure 4.1. Effect of carvacrol on cell cycle distribution in HGF cells 65
Figure 4.2. Effect of carvacrol on cell cycle distribution in OC2 cells 66
Figure 4.3. Effect of carvacrol on cell cycle distribution in HGB cells 67
Figure 4.4. Effect of propofol on cell cycle distribution in HGF cells 68
Figure 4.5. Effect of propofol on cell cycle distribution in OC2 cells 69
Figure 4.6. Effect of propofol on cell cycle distribution in HGB cells 70
Figure 5.1. Carvacrol-induced ROS (H2O2 or O2-) production in HGF cells 71
Figure 5.2. Carvacrol-induced ROS (H2O2 or O2-) production in OC2 cells 72
Figure 5.3. Carvacrol-induced ROS (H2O2 or O2-) production in HGB cells 73
Figure 5.4. Propofol-induced ROS (H2O2 or O2-) production in HGF cells 74
Figure 5.5. Propofol-induced ROS (H2O2 or O2-) production in OC2 cells 75
Figure 5.6. Propofol-induced ROS (H2O2 or O2-) production in HGB cells 76
Figure 6.1. Effect of carvacrol on [Ca2+]i in HGF, OC2 or HGB cells 77
Figure 6.2. Effect of propofol on [Ca2+]i in HGF, OC2 or HGB cells 78
Figure 6.3. Concentration-response plots of carvacrol- or propofol-induced [Ca2+]i responses in OC2 or HGB cells 79
Figure 6.4. Effect of BAPTA-AM on carvacrol-induced cell death in OC2 or HGB cells 80
Figure 6.5. Effect of BAPTA-AM on propofol-induced cell death in OC2 or HGB cells 81
Figure 6.6. Effect of BAPTA-AM on propofol-induced apoptosis in OC2 cells 82
Figure 6.7. Effect of BAPTA-AM on propofol-induced apoptosis in HGB cells 84
Figure 6.8. Carvacrol or propofol induced [Ca2+]i rises involved Ca2+ influx from extracellular space in OC2 or HGB cells 86
Figure 6.9. Carvacrol induced [Ca2+]i rises through PKC activation and non-store-operated Ca2+ channels in OC2 or HGB cells 87
Figure 6.10. Propofol induced [Ca2+]i rises through PKC activation and non-store-operated Ca2+ channels in OC2 or HGB cells 88
Figure 6.11.1. Carvacrol pretreatment abolished the TG- or BHQ-induced [Ca2+]i rise, and that TG or BHQ pretreatment abolished carvacrol-induced [Ca2+]i rises in OC2 cells 89
Figure 6.11.2. Carvacrol pretreatment abolished the TG- or BHQ-induced [Ca2+]i rise, and that TG or BHQ pretreatment abolished carvacrol-induced [Ca2+]i rises in HGB cells 90
Figure 6.12.1. Propofol pretreatment abolished the TG- or BHQ-induced [Ca2+]i rise, and that TG or BHQ pretreatment abolished propofol-induced [Ca2+]i rises in OC2 cells 91
Figure 6.12.2. Propofol pretreatment abolished the TG- or BHQ-induced [Ca2+]i rise, and that TG or BHQ pretreatment abolished propofol-induced [Ca2+]i rises in HGB cells 92
Figure 6.13. ATP induced [Ca2+]i rises in OC2 or HGB cells, but not in HGF cells 93
Figure 6.14. Carvacrol or propofol induced [Ca2+]i rises through PLC activation in OC2 or HGB cells 94
Figure 7.1. Carvacrol induced caspase-3 activation in OC2 cells and HGB cells 95
Figure 7.2. Propofol induced caspase-3 activation in OC2 cells and HGB cells 96
Figure 7.3. Effect of DEVD-CHO on carvacrol-induced cell death in OC2 or HGB cells 97
Figure 7.4. Effect of DEVD-CHO on propofol-induced cell death in OC2 or HGB cells 98
Figure 7.5. Effect of DEVD-CHO on carvacrol-induced apoptosis in OC2 cells 99
Figure 7.6. Effect of DEVD-CHO on carvacrol-induced apoptosis in HGB cells 101
Figure 7.7. Effect of DEVD-CHO on propofol-induced apoptosis in OC2 cells 103
Figure 7.8. Effect of DEVD-CHO on propofol-induced apoptosis in HGB cells 105
Figure 7.9. A novel model for carvacrol/propofol-induced [Ca2+]i rises and apoptosis in OC2 or HGB cells 107
Table 1. Effects of carvacrol in vitro or in vivo studies 108
Table 2. Effects of propofol in vitro or in vivo studies 109
References 110
Appendix 1
Carvacrol-induced [Ca2+]i rise and apoptosis in human glioblastoma cells 127
Appendix 2
Investigation of 2,6-diisopropylphenol (propofol)-evoked Ca2+ movement and cell death in human glioblastoma cells 136
Publications 147
參考文獻 References
Aarts, L., van der Hee, R., Dekker, I., de Jong, J., Langemeijer, H., Bast, A., 1995. The widely used anesthetic agent propofol can replace alpha-tocopherol as an antioxidant. FEBS Lett. 357, 83-85.
Adams, J.M., Cory, S., 1998. The Bcl-2 protein family: arbiters of cell survival. Science 281, 1322-1326.
Aligiannis, N., Kalpoutzakis, E., Mitaki, S., Chinou, I.B., 2001. Com¬position and antimicrobial activity of the essential oils of two Origanum species. J. Agricul. Food Chem. 49, 4168-4170.
Allan, L.A., Clarke, P.R., 2007. Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol. Cell 26, 301-310.
Arunasree, K.M., 2010. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine 17, 581-588.
Ashkenazi, A., Dixit, V.M., 1998. Death receptors: signaling and modulation. Science 281, 1305-1308.
Babich, H., Ackerman, N.J., Burekhovich, F., Zuckerbraun, H.L., Schuck, A.G., 2009. Gingko biloba leaf extract induces oxidative stress in carcinoma HSC-2 cells. Toxicol. In Vitro 23, 992-999.
Bali, M., Akabas, M.H., 2004. Defining the propofol binding site location on the GABAA receptor. Mol. Pharmacol. 65, 68-76.
Bartek, J., Lukas, C., Lukas, J., 2004. Checking on DNA damage in S phase. Nat. Rev. Mol. Cell. Biol. 5, 792-804.
Berns, M., Seeberg, L., Schmidt, M., Kerner, T., 2009. High-dose propofol triggers short-term neuroprotection and long-term neurodegeneration in primary neuronal cultures from rat embryos. J. Int. Med. Res. 37, 680-688.
Berridge, M.J., Bootman, M.D., Roderick, H.L., 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol. 4, 517-529.
Bimczok, D., Rau, H., Sewekow, E., Janczyk, P., Souffrant, W.B., Rothkötter, H.J., 2008. Influence of carvacrol on proliferation and survival of porcine lymphocytes and intestinal epithelial cells in vitro. Toxicol. In Vitro 22, 652-658.
Bootman, M.D., Berridge, M.J., Roderick, H.L., 2002. Calcium signalling: more messengers, more channels, more complexity. Curr. Biol. 12, R563-R565.
Burt, S., 2004. Essential oils: their antibacterial properties and potential applications in foods – a review. Int. J. Food Microbiol. 94, 223-253.
Cerella, C., Diederich, M., Ghibelli, L., 2010. The dual role of calcium as messenger and stressor in cell damage, death, and survival. Int. J. Cell Biol. 2010, 546163.
Chan, A.S., Pang, H., Yip, E.C., Tam, Y.K., Wong, Y.H., 2005. Carvacrol and eugenol differentially stimulate intracellular Ca2+ mobilization and mitogen-activated protein kinases in Jurkat T-cells and monocytic THP-1 cells. Planta. Med. 1, 634-639.
Chou, C.T., He, S., Jan, C.R., 2007. Paroxetine-induced apoptosis in human osteosarcoma cells: activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation. Toxicol. Appl. Pharmacol. 218, 265-273.
Clapham, D.E., 1995. Intracellular calcium. Replenishing the stores. Nature 375, 634-635.
Clapham, D.E., 2007. Calcium signaling. Cell 131, 1047-1058.
Clerkin, J.S., Naughton, R., Quiney, C., Cotter, T.G., 2008. Mechanisms of ROS modulated cell survival during carcinogenesis. Cancer Lett. 266, 30-36.
Coetzee, J.F., Glen, J.B., Wium, C.A., Boshoff, L., 1995. Pharmacokinetic model selection for target controlled infusions of propofol. Assessment of three parameter sets. Anesthesiology 82, 1328-1345.
Das, A., Banik, N.L., Ray, S.K., 2010. Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not inhuman normal astrocytes. Cancer 116, 164-176.
Das, S., Bhattacharyya, S., Ghosh, S., Majumdar, S., 1999. TNF-alpha induced altered signaling mechanism in human neutrophil. Mol. Cell. Biochem. 197, 97-108.
Degterev, A., Boyce, M., Yuan, J., 2003. A decade of caspases. Oncogene 22, 8543-8567.
Denning, T.L., Takaishi, H., Crowe, S.E., Boldogh, I., Jevnikar, A., Ernst, P.B., 2002. Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cells. Free Radic. Biol. Med. 2002; 33, 1641-1650.
Ducret, T., Boudina, S., Sorin, B., Vacher, A.M., Gourdou, I., Liguoro, D., Guerin, J., Bresson-Bepoldin, L., Vacher P., 2002. Effects of prolactin on intracellular calcium concentration and cell proliferation in human glioma cells. Glia 38, 200-214.
Dutta, T.K., 2005. Origin, occurrence, and biodegradation of long-side-chain alkyl compounds in the environment: a review. Environ. Geochem. Health 27, 271-284.
Duvernay, M.T., Filipeanu, C.M., Wu, G., 2005. The regulatory mechanisms of export trafficking of G protein-coupled receptors. Cell Signal. 17, 1457-1465.
Dziak, R., Yang, B.M., Leung, B.W., Li, S., Marzec, N., Margarone, J., Bobek, L., 2003. Effects of sphingosine-1-phosphate and lysophosphatidic acid on human osteoblastic cells. Prostaglandins Leukot. Essent. Fatty Acids 68, 239-249.
Enari, M., Talanian, R.V., Wong, W.W., Nagata, S., 1996. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature 380, 723-726.
Engdahl, O., Abrahams, M., Björnsson, A., Vegfors, M., Norlander, B., Ahlner, J., Eintrei, C., 1998. Cerebrospinal fluid concentrations of propofol during anaesthesia in humans. Br. J. Anaesth. 81, 957-959.
Fabian, D., Sabol, M., Domaracka, K., Bujnakova, D., 2006. Essential oils – their antimicrobial activity against Escherichia coli and effect on intestinal cell viability. Toxicol. In Vitro 20, 1435-1445.
Fleury, C., Mignotte, B., Vayssiere, J.L., 2002. Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84, 131-141.
Florenzano, F., Viscomi, M.T., Mercaldo, V., Longone, P., Bernardi, G., Bagni, C., P2X2R purinergic receptor subunit mRNA and protein are expressed by all hypothalamic hypocretin/orexin neurons. J. Com. Neurol. 498, 58-67.
Friedman, M., Henika, P.R., Mandrell, R.E., 2002. Bactericidal activities of plant essential oils and some of their isolated constituents against C. jejuni, E. coli, L. monocytogenes and S. enteritica. J. Food Prot. 65, 1545-1560.
Fruehauf, J.P., Meyskens, F.L., Jr., 2007. Reactive oxygen species: A breath of life or death? Clin. Cancer Res. 13, 789-794.
Giles, G.I., 2006. The redox regulation of thiol dependent signaling pathways in cancer. Curr. Pharm. Des. 12, 4427-4443.
Giorgi, C., Romagnoli, A., Pinton, P., Rizzuto, R., 2008. Ca2+ signaling, mitochondria and cell death. Curr. Mol. Med. 8, 119-130.
Green, D.R., 1998. Apoptotic pathways: the roads to ruin. Cell 94, 695-698.
Green, D.R., Reed, J.C., 1998. Mitochondria and apoptosis. Science 281, 1309-1312.
Grynkiewicz, G., Poenie, M., Tsien, R.Y., 1985. A new generation of Ca indicators with greatly improved fluorescence properties. J. Biol. Chem. 260, 3440-3450.
Hajnóczky, G., Csordás, G., Das, S., Garcia-Perez, C., Saotome, M., Sinha Roy, S., Yi, M., 2006. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis. Cell Calcium 40, 553-560.
Hama, H., Hara, C., Yamaguchi, K., Miyawaki, A., 2004. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41, 405-415.
Han, S.I., Kim, Y.S., Kim, T.H., 2008. Role of apoptotic and necrotic cell death under physiologic conditions. BMB ReP. 41, 1-10.
Hartmann, J., Verkhratsky, A., 1998. Relations between intracellular Ca2+ stores and store-operated Ca2+ entry in primary cultured human glioblastoma cells. J. Physiol. 513, 411-424.
Hartwell, L., 1992. Defects in a cell cycle checkpoint may be responsible for the genomic instability of cancer cells. Cell 71, 543-546.
Harvey, K.A., Xu, Z., Whitley, P., Davisson, V.J., Siddiqui, R.A., 2010. Characterization of anticancer properties of 2,6-diisopropylphenol-docosahexaenoate and analogues in breast cancer cells. Bioorg. Med. Chem. 18, 1866-1874.
He, L., Mo, H., Hadisusilo, S., Qureshi, A.A., Elson, C.E., 1997. Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J. Nutr. 127, 668-674.
He, P., Ahn, J.C., Shin, J.I., Chung, P.S., 2010. Photoactivation of 9-hydroxypheophorbide alpha triggers apoptosis through the reactive oxygen species-mediated mitochondrial pathway and endoplasmic reticulum stress in AMC-HN-3 laryngeal cancer cells. Int. J. Oncol. 36, 801-808.
Heil, T.P., Lindsay, R.C., 1988. A method for quantitative analysis of flavor-tainting alkylphenols and aromatic thiols in fish. J. Environ. Sci. Health B. 23, 475-488.
Hengartner, M.O., 2000. The biochemistry of apoptosis. Nature 407, 770-776.
Heussler, V.T., Fernandez, P.C., Machado, J.J., Botteron, C., Dobbelaere, D.A., 1999. N-acetylcysteine blocks apoptosis induced by N-a-tosyl-L-phenylalanine chloromethyl ketone in transformed T-cells. Cell Death Differ. 6, 342-350.
Huang, T.C., Lin, Y.T., Chuang, K.P., 2010. Carvacrol has priming effects on reactive oxygen species (ROS) production in C6 glioma cells. Food Agric. Immunol. 21, 47-55.
Humar, M., Graetz, C., Roesslein, M., Goebel, U., Geiger, K.K., Heimrich, B., Pannen, B.H., 2009. Heterocyclic thioureylenes protect from calcium-dependent neuronal cell death. Mol. Pharmacol. 75, 667-676.
Ishikawa, J., Ohga, K., Yoshino, T., Takezawa, R., Ichikawa, A., Kubota, H., Yamada, T., 2003. A pyrazole derivative, YM-58483, potently inhibits store-operated sustained Ca2+ influx and IL-2 production in T lymphocytes. J. Immunol. 170, 4441-4449.
James, R., Glen, J.B., 1980. Synthesis, biological evaluation, and preliminary structure-activity considerations of a series of alkylphenols as intravenous anesthetic agents. J. Med. Chem. 23, 1350-1357.
Jiang, N., Zhang, Z.M., Liu, L., Zhang, C., Zhang, Y.L., Zhang, Z.C., 2006. Effects of Ca2+ channel blockers on store-operated Ca2+ channel currents of Kupffer cells after hepatic ischemia/reperfusion injury in rats. World J. Gastroenterol. 12, 4694-4698.
Kahraman, S., Zup, S.L., McCarthy, M.M., Fiskum, G., 2008. GABAergic mechanism of propofol toxicity in immature neurons. J. Neurosurg. Anesthesiol. 20, 233-240.
Karashima, Y., Damann, N., Prenen, J., Talavera, K., Segal, A., Voets, T., Nilius, B., 2007. Bimodal action of menthol on the transient receptor potential channel TRPA1. J. Neurosci. 27, 9874-9884.
Karkabounas, S., Kostoula, O.K., Daskalou, T., Veltsistas, P., Karamouzis, M., Zelovitis, I., Metsios, A., Lekkas, P., Evangelou, A.M., Kotsis, N., Skoufos, I., 2006. Anticarcinogenic and antiplatelet effects of carvacrol. Exp. Oncol. 28, 121-125.
Kaufmann, T. Tai, L., Ekert, P.G., Huang, D.C., Norris, F., Lindemann, R.K., Johnstone, R.W., Dixit, V.M., Strasser, A., 2007. The BH3-only protein bid is dispensable for DNA damage- and replicative stress-induced apoptosis or cell-cycle arrest. Cell 129, 423-433.
Kastan, M.B., Bartek, J., 2004. Cell-cycle checkpoints and cancer. Nature 432, 316-323.
Kelso, G.F., Porteous, C.M., Coulter, C.V., Hughes, G., Porteous, W.K., Ledgerwood, E.C., Smith, R.A.J., Murphy, M.P., 2001. Selective targeting of a redox-active ubiquinone to mitochondria within cells-antioxidant and antiapoptotic properties. J. Biol. Chem. 276, 4588-4596.
Kesten, S.J., Johnson, J., Werbel, L.M., 1987. Synthesis and antimalarial effects of 4-[(7-chloro-4-quinolinyl)amino]-2-[(diethylamino)methyl] -6-alkylphenols and their N omega-oxides. J. Med. Chem. 30, 906-911.
Kobayashi, D., Ahmed, S., Ishida, M., Kasai, S., Kikuchi, H., 2009. Calcium/calmodulin signaling elicits release of cytochrome c during 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced apoptosis in the human lymphoblastic T-cell line, L-MAT. Toxicology 258, 25-32.
Kong, Q., Lillehei, K.O., 1998. Antioxidant inhibitors for cancer therapy. Med. Hypotheses 51, 405-409.
Krieser, R.J., Eastman, A., 1999. Cleavage and nuclear translocation of the caspase 3 substrate Rho GDP-dissociation inhibitor, D4-GDI, during apoptosis. Cell Death Differ. 6, 412-419.
Kuru, L., Parkar, M.H., Griffiths, G.S., Newman, H.N., Olsen, I., 1998. Flow cytometry analysis of gingival and periodontal ligament cells. J. Dent. Res. 77, 555-564.
Kvolik, S., Glavas-Obrovac, L., Bares, V., Karner, I., 2005. Effects of inhalation anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci. 77, 2369-2383.
Kwon, K.B., Park, E.K., Ryu, D.G., Park, B.H., 2002. D4-GDI is cleaved by caspase-3 during daunorubicin-induced apoptosis in HL-60 cells. Exp. Mol. Med. 34, 32-37.
Lavrik, I.N., Golks, A., Krammer, P.H., 2005. Caspases: pharmacological manipulation of cell death. J. Clin. Invest 115, 2665-2672.
Lecoeur, H., Prevost, M.C., Gougeon, M.L., 2001. Oncosis is associated with exposure of phosphatidylserine residues on the outside layer of the plasma membrane: a reconsideration of the specificity of the annexin V/propidium iodide assay. Cytometry 44, 65-72.
Mammoto, T., Mukai, M., Mammoto, A., Yamanaka, Y., Hayashi, Y., Mashimo, T., Kishi, Y., Nakamura, H., 2002. Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer Lett. 84, 165-170.
Martin, S.J., Green, D.R., 1995. Protease activation during apoptosis: death by a thousand cuts? Cell 82, 349-352.
Martindale, J.L., Holbrook, N.J., 2002. Cellular response to oxidative stress: Signaling for suicide and survival. J. Cell. Physiol. 192, 1-15.
McConkey, D.J., Orrenius, S., 1997. The role of calcium in the regulation of apoptosis. Biochem. Biophys. Res. Commun. 239, 357-366.
Merritt, J.E., Jacob, R., Hallam, T.J., 1989. Use of manganese to discriminate between calcium influx and mobilization from internal stores in stimulated human neutrophils. J. Biol. Chem. 264, 1522-1527.
Miao, Y., Zhang, Y., Wan, H., Chen, L., Wang, F., 2010. GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells. Biomed. Pharmacother. 64, 583-588.
Molinari, M., 2000. Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif. 33, 261-274.
Murphy, P.G., Myers, D.S., Davies, M.J., Webster, N.R., Jones, J.G., 1992. The antioxidant potential of propofol (propofol). Br. J. Anaesth. 68, 613-618.
Nagata, S., 1997. Apoptosis by death factor. Cell 88, 355-365.
Nasmyth, K., 2001. A prize for proliferation. Cell 107, 689-701.
Nicholson, D.W., 1999. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6, 1028-1042.
Nicoletti, I., Migliorati, G., Pagliacci, M.C., Grignani, F., Riccardi, C., 1991. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139, 271-279.
Ogata, Y., Niisato, N., Sakurai, T., Furuyama, S., Sugiya, H., 1995. Comparison of the characteristics of human gingival fibroblasts and periodontal ligament cells. J. Periodontol. 66, 1025-1031.
Orrenius, S., McCabe, M.J., Jr., Nicotera, P., 1992. Ca2+-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol. Lett. 64-65, 357-364
Osborn, A.J., Elledge, S.J., Zou, L., 2002. Checking on the fork: the DNA-replication stress-response pathway. Trends Cell Biol.12, 509-516.
Pinton, P., Rizzuto, R., 2006. Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ. 13, 1409-1418.
Perrella, J., Bhavnani, B.R., 2005. Protection of cortical cells by equine estrogens against glutamate-induced excitotoxicity is mediated through a calcium independent mechanism. BMC Neurosci. 6, 34.
Reinehr, R., Becker, S., Eberle, A., Grether-Beck, S., Häussinger, D., 2005. Involvement of NADPH oxidase isoforms and Src family kinases in CD95-dependent hepatocyte apoptosis. J. Biol. Chem. 280, 27179-27194.
Renschler, M.F., 2004. The emerging role of reactive oxygen species in cancer therapy. Eur. J. Cancer 40, 1934-1940.
Richter, C., 1993. Pro-oxidants and mitochondrial Ca2+: Their relationship to apoptosis and oncogenesis. FEBS Lett. 325, 104-107.
Rieder, C.L., Maiato, H., 2004. Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint. Dev. Cell 7, 637-651.
Rodrigues, M.R., Krause, L.C., Caramao, E.B., dos Santos, J.G., Dariva, C., de Oliveira, J.V., 2004. Chemical composition and extraction yield of the extract of Origanum vulgare obtained from sub-and supercritical CO2. J. Agric. Food Chem. 52, 3042-3047.
Rothe, G., Valet, G., 1990. Flow cytometric analysis of respiratory burst activity in phagocytes with hydroethidine and 2’,7’-dichlorofluorescin. J. Leukoc. Biol. 47, 440-448.
Rozental, R., Faharani, R., Yu, Y., Johnson, J.M., Chan, S.O., Chiu, F.C., 2004. Sodium butyrate induces apoptosis in MSN neuroblastoma cells in a calcium independent pathway. Neurochem. Res. 29, 2125-2134.
Sagara, Y., Hendler, S., Khoh-Reiter, S., Gillenwater, G., Carlo, D., Schubert, D., Chang, J., 1999. Propofol hemisuccinate protects neuronal cells from oxidative injury. J. Neurochem. 73, 2524-2530.
Salvesen, G.S., Duckett, C.S., 2002. IAP proteins: blocking the road to death’s door. Nat. Rev. Mol. Cell Biol. 3, 401-410.
Saraste, A., Pulkki, K., 2000. Morphologic and biochemical hallmarks of apoptosis. Cardiovasc. Res. 45, 528-537.
Soares de Moura, R., Silva, G.A., Tano, T., Resende, A.C., 2010. Effect of propofol on human fetal placental circulation. Int. J. Obstet. Anesth. 19, 71-76.
Sokovic, M., Tzakou, O., Pitarokili, D., Couladis, M., 2002. An¬tifungal activities of selected aromatic plants growing wild in Greece. Nahrung 46, 312-320.
Soletti, R.C., Alves, T., Vernal, J., Terenzi, H., Anderluh, G., Borges, H.L., Gabilan, N.H., Moura-Neto, V., 2010. Inhibition of MAPK/ERK, PKC and CaMKII signaling blocks cytolysin-induced human glioma cell death. Anticancer Res. 30, 1209-1215.
Stammati, A., Bonsi, P., Zucco, F., Moezelaar, R., Alakomi, H.L., von Wright, A., 1999. Toxicity of selected plant volatiles in microbial and mammalian short-term assays. Food Chem. Toxicol. 37, 813-823.
Stennicke, H.R., Salvesen, G.S., 2000. Caspases-controlling intracellular signals by protease zymogen activation. Biochim. Biophys. Acta 1477, 299-306.
Thastrup, O., Cullen, P.J., Drøbak, B.K., Hanley, M.R., Dawson, A.P., 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl. Acad. Sci. U.S.A. 87, 2466-2470.
Thomadaki, H., Scorilas, A., 2006. BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit. Rev. Clin. Lab Sci. 43, 1-67.
Thompson, A.K., Mostafapour, S.P., Denlinger, L.C., Bleasdale, J.E., Fisher, S.K., 1991. The aminosteroid U-73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. A role for Gp in receptor compartmentation. J. Biol. Chem. 266, 23856-23862.
Thornberry, N.A., Lazebnik, Y., 1998. Caspases: enemies within. Science 281, 1312-1316.
Toler, S.M., Noe, D., Sharma, A., 2006. Selective enhancement of cellular oxidative stress by chloroquine: Implications for the treatment of glioblastoma multiforme. Neurosurg. Focus 21, 10.
Tombal, B., Denmeade, S.R., Isaacs, J.T., 1999. Assessment and validation of a microinjection method for kinetic analysis of [Ca2+]i in individual cells undergoing apoptosis. Cell Calcium 25, 19-28.
Tsien, R.Y., 1980. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19, 2396-2404.
Van Esch, G.J., 1986. Toxicology of tert-butylhydroquinone (TBHQ). Food Chem. Toxicol. 24, 1063-1065.
Vaux, D.L., Korsmeyer, S.J., 1999. Cell death in development. Cell 96, 245-254.
Vogt-Eisele, A.K., Weber, K., Sherkheli, M.A., Vielhaber, G., Panten, J., Gisselmann, G., Hatt, H., 2007. Monoterpenoid agonists of TRPV3. Br. J. Pharmacol. 151, 530-40.
Ultee, A., Kets, E.P., Smid, E.J., 1999. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 65, 4606-4610.
Widlak, P., 2000. The DFF40/CAD endonuclease and its role in apoptosis. Acta Biochim. Pol. 47, 1037-1044.
Wondergem, R., Ecay, T.W., Mahieu, F., Owsianik, G., Nilius, B., 2008. HGF/SF and menthol increase human glioblastoma cell calcium and migration. Biochem. Biophys. Res. Commun. 372, 210-215.
Wong, D.Y, Chang, K.W., Chen, C.F, Chang, R.C., 1990. Characterization of two new cell lines derived from oral cavity human squamous cell carcinomas--OC1 and OC2. J. Oral Maxillofac. Surg. 48, 385-390.
Wu, X.J., Hua, X., 2007. Targeting ROS: Selective killing of cancer cells by a cruciferous vegetable derived pro-oxidant compound. Cancer Biol. Ther. 6, 646-647.
Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J., Peng, T.I., Jones, D.P., Wang, X., 1997. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129-1132.
Yang, L.C., Ng, D.C., Bikle, D.D., 2003. Role of protein kinase C alpha in calcium induced keratinocyte differentiation: defective regulation in squamous cell carcinoma. J. Cell. Physiol. 195, 249-259.
Yu, F.S., Yang, J.S., Yu, C.S., Lu, C.C., Chiang, J.H., Lin, C.W., Chung, J.G., 2011. Safrole induces apoptosis in human oral cancer HSC-3 cells. J. Dent. Res. 90, 168-174.
Yuan, J., 1996. Evolutionary conservation of a genetic pathway of programmed cell death. J. Cell. Biochem. 60, 4-11.
Zermati, Y., Mouhamad, S., Stergiou, L., Besse, B., Galluzzi, L., Boehrer, S., Pauleau, A.L., Rosselli, F., D'Amelio, M., Amendola, R., Castedo, M., Hengartner, M., Soria, J.C., Cecconi, F., Kroemer, G., 2007. Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol. Cell 28, 624-637.
Zeytinoglu, H., Incesu, Z., Baser, K.H., 2003. Inhibition of DNA synthesis by carvacrol in mouse myoblast cells bearing a human NRAS oncogene. Phytomedicine 10, 292-299.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code