Responsive image
博碩士論文 etd-0902112-162610 詳細資訊
Title page for etd-0902112-162610
論文名稱
Title
應用導波於埋地管線檢測之研究
The Guided Wave Inspection of Buried Pipe
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-25
繳交日期
Date of Submission
2012-09-02
關鍵字
Keywords
埋地管線、1)扭矩模態、有限元素法、小波轉換、T(0、導波、二維傅立葉轉換
T(0, Guided wave, 1) mode, Buried pipelines, Wavelet transform, Two-dimensional Fourier transform, Finite element method
統計
Statistics
本論文已被瀏覽 5644 次,被下載 441
The thesis/dissertation has been browsed 5644 times, has been downloaded 441 times.
中文摘要
摘要
在石化廠中,為了發揮輸送原料的經濟效益及空間應用的便利性,通常會將管線沿著道路埋設。然而,埋地管線因覆蓋著土壤,一般傳統的非破壞檢測法無法直接對其進行檢測,需藉由導波法才能檢測其腐蝕情況。但由於土壤都具有黏滯性,會使得導波在管線上傳遞能量時產生衰減,進而影響其檢測距離,且隨著埋地深度的改變,其能量衰減之情況亦會不同。因此,本研究以探討導波T(0,1)扭矩模態檢測埋地管線時,於不同埋地深度下,土壤的特性對導波波傳行為的改變及其檢測距離與回波訊號之影響為主要目標。
本論文將分為實驗及數值模擬兩部分來進行研究。在實驗中,分別設定了0.5、1.0、1.5和2.0 m四組不同的埋地深度,針對管線埋地後各類特徵之趨勢以及導波傳遞時的衰減情形進行探討。並利用小波轉換改善因受土壤影響,導致缺陷回波訊號衰減而難以辨別之情況,藉此增加導波檢測缺陷之辨識能力。在數值模擬中,本研究藉由有限元素法暫態模擬,探討導波於埋地管線之波傳行為,並結合二維傅立葉轉換進行模態辨識。
由實驗結果顯示,導波會因為洩漏及土壤的黏滯性而產生衰減。衰減率與埋地深度成正比,且會因土壤的黏滯性而正比於激發頻率,即激發頻率越高衰減率會越大,當管線埋地深度越深,此現象越是明顯。隨著土壤深度增加,管線上各類特徵回波訊號之振幅會隨之下降,但是整體的特徵回波訊號振幅值會隨著頻率的增加而變小的特性趨勢並沒有改變。由訊號分析的結果顯示,小波轉換法能有效提升導波檢測埋地管線上缺陷的辨識度,改善因土壤所造成訊號衰減而導致缺陷難以辨識之情形。由模擬分析的結果顯示,傳遞於埋地管線上的T(0,1)扭矩模態,並不會因為土壤以及其深度的變化,而發生頻散及波式轉換的現象。洩漏於土壤的振動形態,係以剪力波的形式洩漏於土壤內部。本論文針對導波檢測埋地管線所評估之衰減率及其所能傳遞距離,可提供現場檢測埋地管線時,探測點架設位置以及判讀回波訊號的參考依據,能有效提升現場檢測之效率。
Abstract
Abstract

In a petrochemical plant, to exert economic efficiency and spacing convenience for transporting fluid or gas, the pipelines used in the plant are often buried along the road. The buried pipelines are usually wrapped in the soil that only the guided wave method is a convenient technique to perform the nondestructive testing for the pipelines. However, the viscosity of soil causes the attenuation of the guided wave during the test, the accuracy and the detection distance will then be affected. Thus, the objectives of this thesis are to study the characteristics, such as the detection distance and the refraction signal, of the T(0,1) guided wave when propagating along pipelines wrapped in the soil at different depths.
The thesis would be divided into two parts: experiment and numerical simulation. Four different depths, 0.5, 1.0, 1.5 and 2.0 m, are used in the experiment to evaluate the characteristics of reflected signals and its attenuation. Wavelet transform, which would enhance the capability of distinguishing guided wave defect, is used to improve the attenuation of defected refraction signal caused by soil. In the numerical simulation, this research applies the transient simulation by finite element method to analyze the wave propagation behavior of T(0,1) mode guided wave of buried pipeline, which is incorporated with Two-dimensional Fourier transform for modal identification.
The result of experiment shows that the attenuation of the guided wave is caused by the leakage and the viscosity of the soil. The decay rate is proportional to the depth and due to the viscosity of the soil is proportional to the excitation frequency. This phenomenon is more obvious when the pipeline is buried deeper. The reflected signal amplitude of each characteristic would decrease along with the increasing soil depth, but the overall trends did not changed. The result of wavelet transform shows that the capability of distinguishing of the guided wave detection defect of buried pipeline, which attenuation of refraction signal caused by soil would be improved. The result of the numerical simulation indicates that the T(0,1) mode would not cause mode conversion and dispersion due to its propagation through the buried pipeline with different depths of soil. The soil caused leakage of the T(0,1) mode in the form of shear waves. The attenuation rate of guided wave and its detection distance in the study could be the reference of site selection for detection and defect refraction signal determination, which could effectively raise the efficiency of on-site detection.
目次 Table of Contents
目錄
中文摘要 i
英文摘要 ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1前言 1
1.2研究動機與目的 2
1.3文獻回顧 3
1.4研究方法 7
1.5論文結構 8
第二章 基本理論 12
2.1導波於圓管中傳遞之波動方程式 12
2.1.1縱向模態 13
2.1.2扭矩模態 13
2.1.3撓曲模態 13
2.2頻散曲線 14
2.3波形結構 16
2.4有限元素法 17
2.5弱界面之薄層模型 18
2.6二維傅立葉快速轉換法 20
2.7小波轉換法 21
第三章 實驗架構與量測結果 28
3.1導波法檢測儀器設備 28
3.2實驗管線 31
3.3實驗步驟 33
3.4實驗結果與討論 35
3.4.1裸管之回波訊號 35
3.4.2埋地管線之回波訊號 38
3.4.3均勻腐蝕之管線檢測 40
第四章 模擬設定與分析 70
4.1有限元素暫態模擬 70
4.1.1模型建立與網格劃分 71
4.1.2激發訊號與後處理 72
4.1.3訊號擷取 73
4.2虛擬層彈簧勁度之設定 75
4.3分析結果與討論 77
4.3.1模擬之衰減率分析 77
4.3.2波傳模態辨識 78
4.3.3土壤振動模態分析 79
第五章 結論與未來展望 103
5.1結論 103
5.2未來展望 105
參考文獻 107



表目錄
表3.1 管線編號Pipe_1上的缺陷類型、加工方式、分布及尺寸 43
表3.2 管線編號Pipe_2上的缺陷類型、加工方式、分布及尺寸 43
表3.3 Pipe_1裸管實驗所量得各特徵振幅與銲道W2振幅比值紀錄 44
表3.4 6英吋管線在各頻率區間下所對應的頻率與波長 45
表3.5 Pipe_1於埋地深度0.5 m時,所量得各特徵振幅與銲道W2振幅比值紀錄 46
表3.6 Pipe_1於埋地深度1.0 m時,所量得各特徵振幅與銲道W2振幅比值紀錄 47
表3.7 Pipe_1於埋地深度1.5 m時,所量得各特徵振幅與銲道W2振幅比值紀錄 48
表3.8 Pipe_1於埋地深度2.0 m時,所量得各特徵振幅與銲道W2振幅比值紀錄 49
表3.9 Pipe_1於不同埋地深度時,土壤對於導波所造成之衰減率 50
表4.1 ANSYS模擬導波檢測埋地管線所設定之材料參數 81
表4.2 各埋地深度下,在頻率區間為0.4所測得土壤對於導波所造成之衰減率 81
表4.3 激振頻率為22 kHz,於虛擬層設定不同彈簧勁度,模擬土壤對導波所造成之衰減率 81
表4.4 模擬各埋地深度所相對應的等效彈簧勁度 81
表4.5 模擬不同埋地深度之下,土壤對於導波所造成之衰減率 82
表4.6 模擬管線於埋地0.5 m時,擷取洩漏於土壤內部之剪力波,經規一化後之振幅比值 83
表4.7 模擬管線於埋地1.0 m時,擷取洩漏於土壤內部之剪力波,經規一化後之振幅比值 84
表4.8 模擬管線於埋地1.5 m時,擷取洩漏於土壤內部之剪力波,經規一化後之振幅比值 85
表4.9 模擬管線於埋地2.0 m時,擷取洩漏於土壤內部之剪力波,經規一化後之振幅比值 86

圖目錄
圖1.1 傳統超音波檢測示意圖 10
圖1.2 應用導波技術於管線檢測示意圖 10
圖1.3 管線因腐蝕而造成氣體洩漏產生爆炸之案例圖 11
圖2.1 圓柱座標系下的無限長圓管示意圖 22
圖2.2 圓管上縱向模態波傳模式 22
圖2.3 圓管上扭矩模態波傳模式 22
圖2.4 圓管上撓曲模態波傳模式 23
圖2.5 模態表示法,(a) n=0時,為軸向對稱形式及(b) n=1時,沿著周向其質點位移有一個週期之變化 23
圖2.6 L(0,1)模態於6吋管中傳遞50公分之訊號(a)100 kHz、5 Cycles之波傳訊號及(b)200 kHz、5 Cycles之波傳訊號 23
圖2.7 六吋碳鋼管之相位速度頻散曲線 24
圖2.8 六吋碳鋼管之群波速度頻散曲線 24
圖2.9 L(0,2)模態之波形結構 25
圖2.10 T(0,1)模態之波形結構 25
圖2.11 分層結構之模型,(a)為彈性波反射與穿透,(b)為物體表面受到壓力,其耦合情況改變之情形及(c)為接觸面簡化成彈簧連結連接兩物體之示意圖 26
圖2.12 波傳之質點振動方向與假想彈簧之關係圖 26
圖2.13 分層結構與虛擬層示意圖 27
圖2.14 二維傅立葉快速轉換法示意圖 27
圖2.15 Daubechies db3小波函數 27
圖3.1 環狀陣列式探頭 51
圖3.2 訊號處理器 Wavemaker G3 51
圖3.3 回波訊號示意圖 52
圖3.4 DAC衰減曲線示意圖 52
圖3.5 Wave Pro G3回波訊號示意圖 53
圖3.6 法蘭之回波訊號圖 53
圖3.7 銲道之回波訊號圖 54
圖3.8 彎管之回波訊號圖 54
圖3.9 缺陷之回波訊號圖 54
圖3.10 管線Pipe_1架設圖,(a)為各特徵分布示意圖及(b)為各缺陷外形圖 55
圖3.11 管線Pipe_2架設圖,(a)為各特徵分布示意圖及(b)為各腐蝕缺陷外形圖 56
圖3.12 探頭安裝之位置圖,(a)為編號Pipe_1管線,探頭安裝示意圖及(b)為編號Pipe_2管線,探頭安裝示意圖 57
圖3.13 埋地實驗管線擺放位置示意圖 57
圖3.14 埋地管線實驗用之管溝 58
圖3.15 埋地管線實驗用之木箱 59
圖3.16 埋地深度0.5公尺之實驗,(a)為實驗之前視圖及(b)為實驗之俯視圖 60
圖3.17 管線於埋地深度1.0、1.5和2.0公尺之實驗 61
圖3.18 激發頻率區間為1.0時,管線Pipe_1於裸管實驗中,各特徵之回波訊號圖 62
圖3.19 不同頻率區間下,管線Pipe_1於裸管實驗中,各特徵之回波訊號振幅與銲道W2振幅比值之趨勢圖 62
圖3.20 頻率區間為4.0時,管線Pipe_1於裸管實驗中,軸向缺陷A1之回波訊號圖 63
圖3.21 管線Pipe_1於不同深度之埋地實驗,各特徵回波訊號圖 63
圖3.22 不同頻率區間下,管線Pipe_1於埋地深度為0.5 m時,各特徵之回波訊號振幅與銲道W2振幅比值之趨勢圖 64
圖3.23 不同頻率區間下,管線Pipe_1於埋地深度為1.0 m時,各特徵之回波訊號振幅與銲道W2振幅比值之趨勢圖 64
圖3.24 不同頻率區間下,管線Pipe_1於埋地深度為1.5 m時,各特徵之回波訊號振幅與銲道W2振幅比值之趨勢圖 65
圖3.25 不同頻率區間下,管線Pipe_1於埋地深度為2.0 m時,各特徵之回波訊號振幅與銲道W2振幅比值之趨勢圖 65
圖3.26 不同頻率區間下,管線Pipe_1於不同埋地深度之衰減率 66
圖3.27 管線Pipe_2於裸管實驗中所量測的回波訊號圖及C-Sscan圖 66
圖3.28 管線Pipe_2於不同埋地深度所量測的回波訊號圖及C-Sscan圖 67
圖3.29 管線Pipe_2於埋地深度0.5 m時的小波轉換圖 68
圖3.30 管線Pipe_2於埋地深度1.0 m時小波轉換圖 68
圖3.31 管線Pipe_2於埋地深度1.5 m時小波轉換圖 69
圖3.32 管線Pipe_2於埋地深度2.0 m時小波轉換圖 69
圖4.1 Solid45元素 87
圖4.2 裸管模型示意圖 87
圖4.3 模擬埋地管線之模型,(a)為模擬埋地管線示意圖,(b)為土壤半徑示意圖及(c)為虛擬層厚度示意圖 88
圖4.4 管線網格劃分示意圖,(a)為徑向與周向之網格劃分,(b)為軸向之網格劃分及(c)為土壤之網格劃分 89
圖4.5 激振訊號示意圖 90
圖4.6 激發訊號單頻調製,(a) 20 kHz,(b) 22 kHz,(c) 24 kHz,(d) 26 kHz,(e) 28 kHz及(f) 30 kHz 91
圖4.7 T(0,1)模態於埋地管線傳遞之時間變化示意圖 92
圖4.8 裸管時域訊號圖,(a)為傳遞於裸管0.5 m處之時域訊號及(b)為傳遞於裸管2 m處之時域訊號 93
圖4.9 埋地管線時域訊號圖,(a)為傳遞於埋地管線於0.5 m處所擷取的入射時域訊號,及土壤邊界面的反射訊號及(b)為穿透過土壤層於埋地管線2 m處之時域訊號 94
圖4.10 埋地管線於不同土壤深度時,管線與土壤間接觸面所相對應的等效彈簧勁度值 95
圖4.11 模擬各激振頻率下,管線於不同埋地深度時,土壤對於導波所造成之衰減率 95
圖4.12 6吋管線的波數頻散曲線圖 96
圖4.13 中心頻率22-32 kHz的5周期漢寧視窗單頻調製導波激發訊號,模擬管線埋至0.5 m深之土壤時的二維傅立葉轉換圖 97
圖4.14 中心頻率22-32 kHz的5周期漢寧視窗單頻調製導波激發訊號,模擬管線埋至1.0 m深之土壤時的二維傅立葉轉換圖 98
圖4.15 中心頻率22-32 kHz的5周期漢寧視窗單頻調製導波激發訊號,模擬管線埋至1.5 m深之土壤時的二維傅立葉轉換圖 99
圖4.16 中心頻率22-32 kHz的5周期漢寧視窗單頻調製導波激發訊號,模擬管線埋至2.0 m深之土壤時的二維傅立葉轉換圖 100
圖4.17 土壤截面位移向量圖,(a)為距離激發端1 m處,在時間377 時,所擷取的埋地管線土壤截面位移向量圖及(b)為局部放大的土壤截面位移向量圖 101
圖4.18 模擬管線於埋地深度0.5 m時,洩漏於土壤內部之剪力波,於土壤內部傳遞之趨勢圖 102
參考文獻 References
參考文獻
1. M. J. Quarry, A Time Delay Comb Transducer for Guided Wave Mode Tuning in Piping, Ph.D Thesis, the Pennsylvania State University, May 2000.
2. K. Allars, Public Report of The Fire and Explosion at Concophillips Humber Refinery, Health and Safety Executive, 2001.
3. J. A. McFadden, “Radial Vibrations of Thick-walled Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 26, pp. 714-715, 1954.
4. P. M. Naghdi and R. M. Cooper, “Propagation of Elastic Wave in Cylindrical Shells. Including the Effect of Transverse Shear and Rotatory Intertia,” Journal of the Acoustical Society of America, Vol. 28, pp. 56-63, 1956.
5. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. Analytical Foundation,” Journal of the Acoustical Society of America, Vol. 31, pp. 568-573, 1959.
6. D. C. Gazis, “Three-dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. II. Numerical Results,” Journal of the Acoustical Society of America, Vol. 31, pp. 573-578, 1959.
7. J. E. Greenspon, “Vibrations of Thick Cylindrical Shell,” Journal of the Acoustical Society of America, Vol. 31, pp. 1682-1683, 1958.
8. J. E. Greenspon, “Flexural Vibrations of Thick-walled Circular Cylinder According to the Exact Theory of Elasticity,” Journal of the Acoustical Society of America, Vol. 32, pp. 37-34, 1960.
9. J. E. Greenspon, “Vibrations of a Thick-walled Cylindrical Shell-comparison of the Exact Theory with Approximate Theories,” Journal of the Acoustical Society of America, Vol. 32, pp. 571-578, 1960.
10. A. H. Fitch, “Observation of Elastic-pulse Propagation in Axially Symmetric and Nonaxially Symmetric Longitudinal Modes of Hollow Cylinders,” Journal of the Acoustical Society of America, Vol. 35, pp. 706-708, 1963.
11. R. Kumar, “Axially Symmetric Vibrations of a Thin Cylindrical Elastic Shell Filled with Nonviscous, Compressible Fluid,” Acoustics, Vol. 17, pp. 218-222, 1966.
12. R. Kumar, “Dispersion of Axially Symmetric Waves in Empty and Fluid-filled Cylindrical Shells,” Acoustics, Vol. 17, pp. 317-329, 1972.
13. D. C. Worlton, “Ultrasonic Testing with Lamb Waves,” Non-destructive Testing, Vol. 15, pp. 218-222, 1957.
14. W. Mohr and P. Hoeller, “On Inspection of Thin-walled Tubes for Transverse and Longitudinal Flaws by Guided Ultrasonic Waves,” IEEE Transactions on Sonics and Ultrasonics, Vol. 23, pp. 369-374, 1976.
15. G. M. Light, W. D. Jolly and D. J. Reed, “Detection of Stress Corrosion Cracks in Reactor Pressure Vessel and Primary Coolant System Anchor Studs,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 3, pp. 811-818, 1984.
16. G. M. Light, N. R. Joshi and Soung-Nan Liu, “Cylindrically Guided Wave Technique for Inspection of Studs in Power Plants,” Materials Evaluation, pp. 494, Vol. 44, 1986.
17. W. Boettger, H. Schneider and W. Weingarten, “Prototype EMAT System for Tube Inspection with Guided Ultrasonic Waves,” Nuclear Engineering and Design, Vol. 102, pp. 369-376, 1987.
18. S. P. Pelts, D. Jiao and J. L. Rose, “A Comb Transducer for Guided Wave Generation and Mode Selection,” IEEE Conference, San Antonio, TX, November 3-6, 1996.
19. H. J. Shin and J. L. Rose, “Guided Wave Tuning Principles for Defect Detection in Tubing,” Journal of Nondestructive Evaluation, Vol. 17, No. 1, pp. 27-36, 1998.
20. J. L. Rose, S. Pelts and M. Quarry, “A Comb Transducer Model for Guided Wave NDE,” Ultrasonics, Vol. 36/1-5, pp. 163-168, February, 1998.
21. H. J. Shin and J. L. Rose, “Guided Waves by Axisymmetric and Non-Axisymmetric Surface Loading Hollow Cylinders,” Ultrasonics, Vol. 37, pp. 355-363, 1999.
22. J. Li and J. L. Rose, “Excitation and Propagation of Non-axisymmetric Guided Waves in a Hollow Cylinder,” Journal of the Acoustical Society of America, Vol. 109, No. 2, pp. 457-464, 2001.
23. J. Li and J. L. Rose, “Implementing Guided Wave Mode Control by Use of a Phased Transducer Array,” Ultrasonics, Ferroelectrics & Frequency Control, Vol. 48, No. 3, pp. 761-768, May, 2001.
24. D. N. Alleyne and P. Cawley, “A Two-dimensional Fourier Transform Method for the Measurement of Propagating Multimode Signals,” Journal of the Acoustical Society of America, Vol. 89, No. 3, pp. 1159-1168, 1991.
25. D. N. Alleyne and P. Cawley, “The Interaction of Lamb Waves with Defects,” IEEE Transactions on Ultrasonics Ferroelectics and Frequency Control, Vol. 39, pp. 381-396, 1992.
26. M. Castasing and P. Cawley, “The generation, Propagating, and Detection of Lamb Waves in Plates Using Air-coupled Ultrasonic Transducer,” Journal of the Acoustical Society of America, Vol. 100, No. 5, pp. 3070-3077, 1996.
27. P. Cawley and D. N. Alleyne, “The Use of Lamb Wave for the Long Range Inspection of Large Structures,” Ultrasonics, Vol. 34, pp. 287-290, 1996.
28. M. Lowe and O. Diligent, “Low-frequency Reflection Characteristics of The s0 Lamb Wave from a Rectangular in a Plate,” Journal of the Acoustical Society of America, Vol. 111, No. 1, Pt. 1, Jan., pp. 64-74, 2002.
29. O. Diligent, P. Cawley and M. Lowe, “The Low-frequency Reflection and Scattering of the S0 Lamb Mode from a Circular Through-thickness Hole in a Plate: Finite Element, Analytical and Experimental Studies,” Journal of the Acoustical Society of America, Vol. 112, No. 6, December, pp. 2589-2601, 2002.
30. D. N. Alleyne, P. Cawley and M. Lowe, “The Long Range Detection of Corrosion in Pipes Using Lamb waves,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14, pp. 2073-, 1995.
31. D. N. Alleyne, P. Cawley and M. Lowe, “The Inspection Chemical Plant Pipework Using Lamb Waves: Defect Sensitivity and Field Experience,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 15, pp. 1859, 1996.
32. M. Lowe, D. N. Alleyne and P. Cawley, “Defect Detection in Pipes Using Guided Waves,” Ultrasonics, Vol. 36, pp. 147-154, 1998.
33. D. N. Alleyne, P. Cawley and M. Lowe, “The Reflection of Guided Waves From Circumferential Notches in Pipes,” J. Appl. Mech., Vol. 65, pp. 635-641, 1998.
34. D. N. Alleyne, P. Cawley and M. J. S. Lowe, “The Mode Conversion of a Guided Wave by a Part-Circuferential Notch in a Pipe,” J. Appl. Mech., Vol. 65, pp. 649-656, 1998.
35. D. N. Alleyne and P. Cawley, “Long Range Propagation of Lamb Waves in Chemical Plant Pipework,” Materials Evaluation, Vol. 55, pp. 504-508, 1997.
36. A. Demma, P. Cawley, M. L. S. Lowe and A. G. Roosenbrand, “The Reflection of the Fundamental Torsional Mode from Cracks and Notches in Pipes,” Journal of the Acoustical Society of America, Vol. 114, No. 2, August, pp. 611-625, 2003.
37. A. Demma, P. Cawley, M. J. S. Lowe, B. Pavlakovic and A. G. Roosenbrand, “The Reflection of Guided Waves from Notches in Pipes : a Guide for Interpreting Corrosion Measurements,” NDT&E International, Vol. 37, No. 3, pp.167-180, 2004.
38. H. Kwun and K. A., “Experimental Observation of Elastic-wave Dispersion in Bonded Solid of Various Configurations,” Journal of the Acoustical Society of America, Vol. 99, pp. 962-968, 1996.
39. J. W. Cheng, S. K. Yang, and B. H. Li, “Guided Wave Attenuation in Clamp Support Mounted Pipelines,” Materials Evaluation, Vol. 65, No.3, pp.317-322, 2007.
40. S. K. Yang, P. H. Lee and J. W. Cheng, “Effect of Welded Pipe Support Brackets on Torsional Guided Wave Propagation,” Materials Evaluation, Vol. 67, No.8, pp.935-944, 2009.
41. M. Beard, B. Pavlakvic, M. Lowe and P. Cawley, “Development of a Guided Wave-Based Diagnostic Technique for Embedded Rock Bolt and Prestressing,” Bull. Liaison Lab. Ponts Chaussees, Vol. 239, pp. 29-40, 2002.
42. M. Beard, Guided Wave Inspection of Embedded Cylindrical Structures, Imperial College, 2002.
43. T. Vogt, M. Lowe and P. Cawley, “The Scattering of Guided Waves in Partly Embedded,” Journal of the Acoustical Society of America, Vol. 113, pp. 1258-1272, 2003.
44. H. Kwan, S.Y. Kim, M.S. Choi, and S.M. Walker, “Torsional Guided Wave Attenuation in Coal-tar-enamal Coated, Buried Piping,” NDT&E International, Vol. 37, pp.167-180, 2004.
45. J. W. Cheng, S. K. Yang, and B. H. Li, “Torsional Guided Wave Attenuation on the Buried Pipe,” Materials Evaluation, Vol. 64, pp.412-416, 2006.
46. J. W. Cheng, S. K. Yang, and S. M. Chiu, “The Use of Guided Wave for Detecting Discontinuities in Fluid-Filled Pipes,” Materials Evaluation, Vol. 65, pp.1129-1134, 2007.
47. F. Chati, F. Léon, M. E. Moussaoui, A. Klauson and G. Maze, “Longitudinal Mode L(0,4) Used for The Determination of The Deposit Width on The Wall of a Pipe,” NDT & E International, Vol. 44, pp.188-194, 2011.
48. R. Seifried, L. Jacobs, and J. Qu, “Propagation of Guided Waves in Adhesive Bounded Components,” NDT & E International, Vol. 37, pp. 317-328, 2002.
49. B. Hosten and M. Castaings, “The Measurement of A0 and S0 Lamb Wave Wttenuation to Determine the Normal and Shear Stiffnesses of a Compressively Loaded Interface,” Journal of the Acoustical Society of America, Vol. 113, pp. 3161-3170, 2003.
50. B. Hosten and M. Castaings, “Finite Elements Methods for Modeling the Guided Waves Propagation in Structures with Weak Interface,” Journal of the Acoustical Society of America, Vol. 117, pp. 1108-1113, 2005.
51. M. Schoenberg, “Elastic Wave Behavior Across Linear Slip Interface,” Journal of the Acoustical Society of America, Vol. 68, pp. 1516-1521, 1980
52. B. W. Drinkwater, R.S. Dwyer-Joyce and P. Cawley, “A Study of The Interaction Between Ultrasound and A Partially Contacting Solid-Solid Interface,” Proc. R. Soc. Lond. A, Vol. 452, pp. 2613-2628, 1996.
53. J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University, 1999.
54. M. G. Silk and K. P. Bainton, “The Propagation in Metal Tubing of Ultrasonic Wave Modes Equivalent to Lamb Waves,” Ultrasonics, Vol. 17, pp. 11-19, 1979.
55. B. Pavlakovic, M. Lowe, D. N. Alleyne and P. Cawley, “DISPERSE: A General Purpose Program for Creating Dispersion Curve,” in Review of Progress in Quantitative Nondestructive Evaluation, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 16, pp.185-192, 1997.
56. 劉晉奇、禇晴暉,有限元素分析與ANSYS的工程應用,滄海書局,2006。
57. B. Pavlakovic, Leaky Guided Ultrasonic Wave in NDT, Imperial College, 1998.
58. T. Onsay and A.G. Haddow, “Wavelet Transform Analysis of Transient Wave Propagation in a Dispersive Medium,” Journal of the Acoustical Society of America, Vol. 95, pp. 1441-1449, 1994.
59. M. Misiti, Y. Misiti, C. Oppenheim and J.M. Poggi, Wavelet Toolbox User’s Guide, The Math Works, Inc. 1996.
60. 台灣中油股分有限公司。2011年02月20日,取自http://www.cpc.com.tw/big5/home/index.asp
61. Wavemaker Pipe Screening System User Manual and Course Notes, UK, Guided Ultrasonics Ltd., 2001.
62. 台北市政府工務局。施工規範暨工科分析整合查詢系統。2011年02月20日,取自http://pwbems.tcg.gov.tw/TPECS/Default.aspx
63. S. Fletcher and M. Lowe, “Scattering of The Fundamental Torsional Mode at Axial Crack in A Pipe,” Journal of the Acoustical Society of America, Vol. 127, pp. 730-740, 2010.
64. P. Wilcox, M. Evans, O. Diligent, M. Lowe and P. Cawley, “Dispersion and Excitability of Guided Acoustic Waves in Isotropic Beams with Arbitrary Cross Section,” in D. Thompson and D. Chimenti, eds., Review of Progress in Quantitative NDE, edited by D. Thompson and D. Chimenti (Plenum, New York), Vol. 11B, pp. 203-210, 2002.
65. W. Gradien and H. G. Stuit, “Modelling of Soli Vibrations from Railway Tunnels,” Journal of Sound and Vibration, Vol. 267, pp. 605-619, 2003.
66. H. Sherif and S. S. Kossa, “Relationship between Normal and Tangential Contact Stiffness of Nominally Flat Surfaces,” Wear, Vol. 151, pp. 49-62, 1991.
67. A. Galvagni and P. Cawley, “The Reflection of Guided Waves from Simple Supports in Pipes,” Journal of the Acoustical Society of America, Vol. 129, pp. 1869-1880, 2011.
68. ANSYS(R) Product Launcher Release 11.0, Copyright(c) 1994-2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code