Responsive image
博碩士論文 etd-0902114-033450 詳細資訊
Title page for etd-0902114-033450
論文名稱
Title
超臨界流體與電阻式記憶體之研究
Study on Supercritical Fluids and Resistance Random Access Memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-09-24
繳交日期
Date of Submission
2014-10-02
關鍵字
Keywords
電阻式記憶體、氧化矽、金屬摻雜、氧化石墨烯、超臨界二氧化碳流體
Silicon oxide, Metal doping, Supercritical CO2 fluids, Graphene oxide, RRAM
統計
Statistics
本論文已被瀏覽 5701 次,被下載 48
The thesis/dissertation has been browsed 5701 times, has been downloaded 48 times.
中文摘要
在論文研究中,我們針對氧化物電阻式記憶體(RRAM)元件電阻切換機制提出一完整的論述。在物理機制的研究當中,我們專注於材料,元件結構,和後續處理技術對氧化物電阻式記憶體特性的影響,並對此先進的氧化物電阻式記憶體元件進行一個深入的研究與探討。首先,針對氧化物切換層材料進行選擇與研究,氧化矽是可相容於半導體製程的常用材料。本論文所提出的氧化矽摻雜金屬電阻切換層的技術是特別的有機會被導入到半導體製造業。更進一步的,我們針對多層氧化矽摻雜金屬的多層堆疊結構進行研究,發現可以有效降低電流,改善RRAM性能,因此,本論文進行雙端石墨烯氧化物摻雜的氧化矽電阻式記憶體(RRAM)的研究與開發,可具有阻絲自對準形成和自限流的優秀操作能力。造成此優秀的元件特性主要是由於在濺射過程中所形成的氧化石墨烯薄片在元件操作過程中進行氧化和還原的機制所造成。並且此元件可以在穩定的工作電流之下,操作1兆(1012)次以上,並且同時具有高度多階記憶。此外,我們還採用了超臨界二氧化碳流體處理的新概念,帶入具有高氧化力的超臨界水分子,使得電阻切換層中的缺陷減少,有效降低RRAM元件用於可攜式電子產品的工作電流。另外,利用電性量測的方式可以驗證有ITO電極的電阻式記憶體,其電阻切換區域會進入ITO電極之中,並且降低操作電壓與電流,有效的降低RRAM元件的操作功率。最後,本論文利用鋰矽氧化物(LiSiOx)薄膜電阻式記憶體(RRAM)元件,透過模擬神經元中的突觸可塑性仿效神經元突觸的學習機制,顯現海伯學習法(Hebb's learning)中重要的尖峰時間依賴可塑性(STDP)及大腦記憶種類中的短期記憶(STM)、長期記憶(LTM)這些重要的仿生特性。
Abstract
In this dissertation, we first provide an overview of our work in resistive switching mechanisms on oxide-based resistance random access memory (RRAM) devices. To investigate the physical mechanisms, we focus on materials, device structures, and treatment methods to provide an in-depth understanding of the state-of-the art oxide based RRAM. On the materials, silicon oxide is compatible to semiconductor fabrication lines. It is especially promising for the silicon oxide doped metal technology to be introduced into the industry. Furthermore, the multilayer stacked configuration of metal-doped silicon oxide is investigated for RRAM applications. We find that the operation current of RRAM can be effectively reduced and the performance of RRAM can also be improved. Based on that, double-ended graphene oxide doped silicon oxide based via-structure RRAM with filament self-aligning formation and self-current limiting operation ability is demonstrated. The device exhibits outstanding performance including high switching speed (~30ns) at low operation voltage, long endurance property (>1012 cycles), and read disturbance immunity (>1010 cycles), reasonable retention (>104s at 125 ̊C), and multilevel memorial state. The outstanding device characteristics are attributed to the oxidation and reduction of graphene oxide flakes formed during the sputter process. In addition, we have also adopted a new concept of supercritical CO2 fluid treatment to carry the supercritical water with high oxidizing ability into the resistive switching layer to efficiently reduce the operation current of RRAM devices for portable electronic applications. The characteristics of RRAM with ITO electrode can be verified by electrical measurement approach. We find that the resistance switching will take place in ITO electrode, from which the lower operating voltage and current can be achieved to effectively reduce the operating power of RRAM device. Finally, lithium silicon oxide (LiSiOx) RRAM component is used to simulate synaptic plasticity of neurons to imitate learning mechanism of neuron synapse. We demonstrate some important bionic features for the memory in the brain of animal, such as the significant features of spike time-dependent plasticity (STDP) for Hibernia learning (Hebb's learning), the properties of short-term memory (STM), and long-term memory (LTM).
目次 Table of Contents
Contents
Chinese Prologue………………………………………...………...…………………..i
English Prologue………………………………………….…………………………..iii
Acknowledgment……………………………………………………………………vi
Chinese Abstract………………………..……….…………….……………………vii
English Abstract …………………..………………………...………………………viii
Contents……………………….……………………………………………………….x
Figure Captions…………………………………….………………………………..xiii
Table Captions………………………………..……………………………………xx

Chapter 1 Introduction ……………………………………………………………...1
1-1 Introduction of memory.………………………………………………...………..1
1-2 Motivation of this Dissertation………………………………………..………….8

Chapter 2 Metal-Doped Silicon Oxide Based Resistance Random Access
Memory..……………………………………....………...………........10
2-1 Introduction………………………………………………………………….….10
2-2 Experimental……………………………………………………………………10
2-3 Results and Discussion……………………………………….……………..11
2-4 Summary…………………………………………………………….….……..15

Chapter 3 New Low Temperature Process Technology: Supercritical Fluids .…16
3-1 Introduction……………………………………………………………………..16
3-2 Experimental………………………………………………………………...….16
3-3 Results and Discussion……………………………………………….….…17
3-4 Summary…………………………………….…………………………..….23

Chapter 4 Mechanism of Power Consumption Inhibitive Multi-layer
Zn:SiO2/SiO2 Structure Resistance Random Access Memory …....24
4-1 Introduction……………………………………………………………………..24
4-2 Experimental……………………………………………………………...…….25
4-3 Results and Discussion……………………………..………………..……..27
4-4 Summary……………………………………………………………………35

Chapter 5 Multilayer Graphene Oxide Doped Oxide Based RRAM………...….36
5-1 Introduction…………………………………………………………….…….....36
5-2 Experimental………………………………………………………….….……..36
5-3 Results and Discussion……………………………………….…………….39
5-4 Summary………………………………………………………………………48

Chapter 6 Characterization of Oxygen Accumulation in Indium Tin Oxide for
Resistance Random Access Memory…………………………………49
6-1 Introduction…………………………………………………………………..…49
6-2 Experimental……………………………………………...…………………….50
6-3 Results and Discussion……………………………………………….…….51
6-4 Summary………………………………………………………...…………….56

Chapter 7 Dual Ion Effect of the Lithium Silicate Resistance Random Access
Memory………………………………………………………….……..58
7-1 Introduction……………………………………………………………….……58
7-2 Experimental…………………………………………………….…………..…59
7-3 Results and Discussion………………………………………………….….60
7-4 Summary……………………………………………………………………....65

Chapter 8 Bionic Synapse Memoristor…………………………………..………..66
8-1 Introduction……………………………………………………………..…..…..66
8-2 Experimental………………………………………………………….……..….67
8-3 Results and Discussion……………………………………………………..68
8-4 Summary………………………………………………………………………75

Chapter 9 Conclusion……………………………………………………………….76

References…………………………………………………………..……………….79

Publication List……………………………………………………………………..89
參考文獻 References
[1] S. M. Sze, Semiconductor Devices Physics and Technology, Wiley, Hoboken, NJ, USA, 2002.
[2] T. C. Chang, F. Y. Jian, S. C. Chen, and Y. T. Tsai, Mater. Today, 2011, 14, 608-615.
[3] M. F. Hung, Y. C. Wu, and Z. Y. Tang, App. Phys. Lett., 2011, 98, 162108.
[4] C. C. Lin, Y. Kuo, and S. Zhang, J. Vac. Sci. Technol. B, 2014, 32, 03D116.
[5] Y. E. Syu, T. C. Chang, J. H. Lou, T. M. Tsai, K. C. Chang, M. J. Tsai, Y. L. Wang, M. Liu, and S. M. Sze, Appl. Phys. Lett., 2013, 102, 172903.
[6] K. C. Chang, R. Zhang, T. C. Chang, T. M. Tsai, J. C. Lou, J. H. Chen, T. F. Young, M. C. Chen, Y. L. Yang, Y. C. Pan, G. W. Chang, T. J. Chu, C. C. Shih, J. Y. Chen, C. H. Pan, Y. T. Su, Y. E. Syu, Y. H. Tai, and S. M. Sze, IEEE Electron Device Lett., 2013, 34, 677-679.
[7] C. C. Lin and Y. Kuo, J. App. Phys., 2014, 115, 084113.
[8] C. C. Lin and Y. Kuo, J. Vac. Sci. Technol. B, 2013, 31, 030605.
[9] G. W. Chang, T. C. Chang, J. C. Jhu, T. M. Tsai, Y. E. Syu, K. C. Chang, Y. H. Tai, F. Y. Jian, and Y. C. Hung, Appl. Phys. Lett., 2012, 100, 182103.
[10] P. T. Liu, Y. T. Chou, and L. F. Teng, Appl. Phys. Lett., 2009, 94, 242101.
[11] C. T. Tsai, T. C. Chang, S. C. Chen, I. Lo, S. W. Tsao, M.C. Hung, J. J. Chang, C. Y. Wu, and C. Y. Huang, Appl. Phys. Lett., 2010, 96, 242105.
[12] H. B. Chen, C. Y. Chang, N. H. Lu, J. J. Wu, M. H. Han, Y. C. Cheng, and Y. C. Wu, IEEE Electron Device Lett., 2013, 34, 897-899.
[13] T. C. Chen, T. C. Chang, C. T. Tsai, T. Y. Hsieh, S. C. Chen, C. S. Lin, M. C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, Appl. Phys. Lett., 2010, 97, 112104.
[14] G. W. Chang, T. C. Chang, J. C. Jhu, T. M. Tsai, Y. E. Syu, K. C. Chang, Y. H. Tai, F. Y. Jian, Y. C. Hung, IEEE Electron Device Lett., 2012, 33, 540-542.
[15] T. Y. Wei, P. H. Yeh, S. Y. Lu, and Z. Lin-Wang, J. Am. Chem. Soc., 2009, 131, 17690-17695.
[16] K. Distin, Cultural Evolution, Cambridge University Press, UK, 2010.
[17] K. R. Gibson, K. R. Gibson, and T. Ingold, Tools, Language and Cognition in Huaman Evolution, Cambridge University Press, UK, 1994.
[18] D. Kahng, and S. M. Sze, Bell Syst. Tech. J., 1967, 46, 1288.
[19] H. P. Wong, S. Raoux, S. B. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, A. Mehdi, and G. E. Kenneth, Proc. IEEE, 2010, 98, 2201-2227.
[20] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature, 2008, 453, 80-83.
[21] M. H. Lankhorst, B. W. Ketelaars, and R. A. M. Wolters, Nature Mater., 2005, 4, 347-352.
[22] J. F. Scott, Nature Mater., 2007, 6, 256-257.
[23] R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater., 2009, 21, 2632-2663.
[24] Y. J. Chen, H. L. Chen, T. F. Young, T. C. Chang, T. M. Tsai, K. C. Chang, R. Zhang, K. H. Chen, J. C. Lou, T. J. Chu, J. H. Chen, D. H. Bao, and S. M Sze, Nanoscale Research Letters, 2014, 9, 52.
[25] S. B. Long, C. Cagli, D. Ielmini, M. Liu, and J. Sune, J. App. Phys., 2012, 111, 074508.
[26] Y. E. Syu, T. C. Chang, C. T. Tsai, G. W. Chang, T. M. Tsai, K. C. Chang, Y. H. Tai, M. J. Tsai and S. M. Sze, Electrochem. and Solid-State Lett., 2011, 14, H419-H421.
[27] W. Y. Chang, C. S. Peng, C. H. Lin, J. M. Tsai, F. C. Chiu, and Y. L. Chueh, J. Electrochem. Soc., 2011, 158, H872-H875.
[28] C. H. Hsu, Y. S. Fan, and P. T. Liu, Appl. Phys. Lett., 2013, 102, 062905.
[29] K. H. Chen, R. Zhang, T. C. Chang, T. M. Tsai, K. C. Chang, J. C. Lou, T. F. Young, J. H. Chen, C. C. Shih, C. W. Tung, Y. E. Syu, and S. M. Sze, Appl. Phys. Lett., 2013, 102, 133503.
[30] W. H. Guan, S. B. Long, R. Jia, and M. Liu, Appl. Phys. Lett., 2007, 91, 062111.
[31] Y. S. Fan, P. T. Liu, L. F. Teng, and C. H. Hsu, Appl. Phys. Lett., 2012, 101, 052901.
[32] T. M. Tsai, K. C. Chang, R. Zhang, T. C. Chang, J. C. Lou, J. H. Chen, T. F. Young, B. H. Tseng, C. C. Shih, Y. C. Pan, M. C. Chen, J. H. Pan, Y. E. Syu, and S. M. Sze, Appl. Phys. Lett., 2013, 102, 253509.
[33] C. H. Huang, J. S. Huang, S. M. Lin, W. Y. Chang, J. H. He, and Y. L. Chueh., ACS Nano, 2012, 6, 8407-8414.
[34] J. W. Huang, R. Zhang, T. C. Chang, T. M. Tsai, K. C. Chang, J. C. Lou, T. F. Young, J. H. Chen, H. L. Chen, Y. C. Pan, X. Huang, F. Y. Zhang, Y. E. Syu, and S. M. Sze, Appl. Phys. Lett., 2013, 102, 203507.
[35] Q. Liu, W. Guan, S. B. Long, R. Jia, M. Liu, and J. Chen, Appl. Phys. Lett., 2008, 92, 012117.
[36] Y. E. Syu, R. Zhang, T. C. Chang, T. M. Tsai, K. C. Chang, J. C. Lou, T. F. Young, J. H. Chen, M. C. Chen, Y. L. Yang, C. C. Shih, T. J. Chu, J. Y. Chen, C. H. Pan, Y. T. Su, H. C. Huang, D. S. Gan, and S. M. Sze, IEEE Electron Device Lett., 2013, 34, 864-866.
[37] M. Liu, Z. Abid, W. Wang, X. L. He, Q. Liu, and W. H. Guan, Appl. Phys. Lett., 2009, 94, 233106.
[38] R. Zhang, K. C. Chang, T. C. Chang, T. M. Tsai, K. H. Chen, J. C. Lou, J. H. Chen, T. F. Young, C. C. Shih, Y. L. Yang, Y. C. Pan, T. J. Chu, S. Y. Huang, C. H. Pan, Y. T. Su, Y. E. Syu and S. M Sze, Nanoscale Res. Lett., 2013, 8, 497.
[39] Y. Wang, Q. Liu, S. B. Long, W. Wang, Q. Wang, M. H. Zhang, S. Zhang, Y. T. Li, Q. Y. Zuo, J. H. Yang, and M. Liu, Nanotechnology, 2010, 21, 045202.
[40] R. Zhang, T. M. Tsai, T. C. Chang, K. C. Chang, K. H. Chen, J. C. Lou, T. F. Young, J. H. Chen, S. Y. Huang, M. C. Chen, C. C. Shih, H. L. Chen, J. H. Pan, C. W. Tung, Y. E. Syu, and S. M. Sze, J. App. Phys., 2013, 114, 234501.
[41] Y. T. Li, S. B. Long, M. H. Zhang, Q. Liu, S. Zhang, Y. Wang, Q. Y. Zuo, S. Liu, and M. Liu, IEEE Electron Device Lett., 2010, 31, 117-119..
[42] K. C. Chang, J. W. Huang, T. C. Chang, T. M. Tsai, K. H. Chen, T. F. Young, J. H. Chen, R. Zhang, J. C. Lou, S. Y. Huang, Y. C. Pan, H. C. Huang, Y. E. Syu, D. S. Gan, D. H. Bao, and S. M Sze, Nanoscale Res. Lett., 2013, 8,523.
[43] W. H. Guan, M. Liu, S. B. Long, Q. Liu, and W. Wang, Appl. Phys. Lett., 2008, 93,223506.
[44] C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari , A. Mews , M. Burghard, and K. Kern, Nano Lett., 2007, 7, 3499-3503.
[45] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306, 666-669.
[46] A. K. Geim, and K. S. Novoselov, Nature Mater., 2007, 6, 183-191.
[47] C.T. Tsai, T.C. Chang, P.T. Liu, P.Y. Yang, Y.C. Kuo, K.T. Kin, P.L. Chang, and F.S. Huang, Appl. Phys. Lett., 2007, 91, 012109.
[48] C.T. Tsai, T.C. Chang, K.T. Kin, P.T. Liu, P.Y. Yang, C.F. Weng, F.S. Huang, J. App. Phys., 2008, 103(7), 074108.
[49] M.C. Chen, T.C. Chang, S.Y. Huang, K.C. Chang, H.W. Li, S.C. Chen, J. Lu, and Y. Shi, Appl. Phys. Lett., 2009, 94,162111.
[50] C.T. Tsai, P.T. Liu, T.C. Chang, C.W. Wang, P.Y. Yang, and F.S. Yeh, IEEE Electron Device Lett., 2007, 28, 584–586.
[51] C.T. Tsai, T.C. Chang, P.T. Liu, Y.L. Cheng, K.T. Kin, and F.S. Huang, Electrochem. and Solid-State Lett., 2009, 12, H35–H37.
[52] M.C. Chen, T.C. Chang, S.Y. Huang, K.C. Chang, H.C. Huang, S.C. Chen,
J. Liu, D.S. Gan, N.J. Ho, T.F. Young, G.W. Jhang, and Y.H. Tai, Surface & Coatings Technology, 2009, 204, 1112–1115.
[53] K.C. Chang, T.M. Tsai, T.C. Chang, Y.E. Syu, H.C. Hung, Y.C. Hung, T.F. Young, D.S.Gan, and N.J. Ho, Electrochem. and Solid-State Lett., 2011, 14, K47–K50.
[54] K.C. Chang, T.M. Tsai, T.C. Chang, Y.E. Syu, C.C. Wang, S.L. Chuang, C.H. Li, D.S. Gan, and S.M. Sze, Appl. Phys. Lett., 2011, 99, 263501.
[55] K.C. Chang, T.M. Tsai, T.C. Chang, Y.E. Syu, S.L. Chuang, C.H. Li, D.S. Gan, and S.M. Sze, Electrochem. and Solid-State Lett., 2012, 15, H65–H68.
[56] Y. Kikuchi, K. Kurata, J. Nakatani, M. Hirao, and Y. Oshima, J. Hazardous Materials, 2011, 194, 283–289.
[57] M. C. Chen, T. C. Chang, Y. C. Chiu, S. C. Chen, S. Y. Huang, K. C. Chang, T. M. Tsai, K. H. Yang, S. M. Sze, and M. J. Tsai, Thin Solid Films, 2013, 528, 224-228.
[58] Y. E. Syu, T. C. Chang, T. M. Tsai, G. W. Chang, K. C. Chang, Y. H. Tai, M. J. Tsai, Y. L. Wang, and S. M. Sze, Appl. Phys. Lett., 2012, 100, 022904.
[59] T. M. Tsai, K. C. Chang, T. C. Chang, Y. E. Syu, S. L. Chuang, G. W. Chang, G. R. Liu, M. C. Chen, H. C. Huang, S. K. Liu, Y. H. Tai, D. S. Gan, Y. L. Yang, T. F. Young, B. H. Tseng, K. H. Chen, M. J. Tsai, C. Ye, H. Wang, and S. M. Sze, IEEE Electron Device Lett., 2012, 33, 1696-1698.
[60] K. C. Chang, T. M. Tsai, T. C. Chang, H. H. Wu, J. H. Chen, Y. E. Syu, G. W. Chang, T. J. Chu, G. R. Liu, Y. T. Su, M. C. Chen, J. H. Pan, J. Y. Chen, C. W. Tung, H. C. Huang, Y. H. Tai, D. S. Gan, and S. M. Sze, IEEE Electron Device Lett., 2013, 34, 399-401.
[61] T. J. Chu, T. M. Tsai, T. C. Chang, K. C. Chang, R. Zhang, K. H. Chen, J. H. Chen, T. F. Young, J. W. Huang, J. C. Lou, M. C. Chen, S. Y. Huang, H. L. Chen, Y. E. Syu, D. H. Bao, and S. M. Sze, IEEE Electron Device Lett., 2014, 35, 217-219.
[62] L. Ji, Y. F. Chang, B. Fowler, Y. C. Chen, T. M. Tsai, K. C. Chang, M. C. Chen, T. C. Chang, S. M. Sze, E. T. Yu, and J. C. Lee, Nano Lett., 2014, 14, 813-818.
[63] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, Nature Mater., 2010, 9, 403-406.
[64] L. J. Zhen, W. H. Guan, L. W. Shang, M. Liu, and G. Liu, J. Phys. D: Appl. Phys., 2008, 41, 135111.
[65] X. Y. Dong, X. X. Wu, G. Y. Sun, Y. Xie, H. Li, and Y. Chen, in Proceedings of the Design Automation Conference, 2008, 554–559.
[66] S. C. Chen, T. C. Chang, P. T. Liu, Y. C. Wu, P. S. Lin, B. H. Tseng, J. H.
Shy, S. M. Sze, C. Y. Chang, and C. H. Lien, IEEE Electron Device Lett., 2007,
28(9), 809–811.
[67] W. R. Chen, T. C. Chang, J. L. Yeh, S. M. Sze, and C. Y. Chang, Appl. Phys. Lett., 2008, 92(15), 152114.
[68] P. H. Yeh, L. J. Chen, P. T. Liu, D. Y. Wang, and T. C. Chang, Electrochim. Acta, 2007, 52(8), 2920–2926.
[69] P. H. Yeh, C. H. Yu, L. J. Chen, H. H. Wu, P. T. Liu, and T. C. Chang, Appl. Phys. Lett., 2005, 87(19), 193504.
[70] Q. Liu, W. H. Guan, S. B. Long, M. Liu, S. Zhang, Q. Wang, and J. N.
Chen, J. Appl. Phys., 2008, 104, 114514.
[71] M. C. Chen, T. C. Chang, C. T. Tsai, S. Y. Huang, S. C. Chen, C. W. Hu,
S. M. Sze, and M. J. Tsai, Appl. Phys. Lett., 2010, 96, 262110.
[72] Y. E. Syu, T. C. Chang, T. M. Tsai, Y. C. Hung, K. C. Chang, M. J. Tsai,
M. J. Kao, and S. M. Sze, IEEE Electron Device Lett., 2011, 32, 545–547.
[73] Y. T. Tsai, T. C. Chang, C. C. Lin, S. C. Chen, C. W. Chen, S. M. Sze, F.
S. Yeh, and T. Y. Tseng, Electrochem. Solid-State Lett., 2011, 14(3), H135–H138.
[74] S. Y. Wang, C. W. Huang, D. Y. Lee, T. Y. Tseng, and T. C. Chang, J. Appl. Phys., 2010, 108(11), 114110.
[75] T. M. Tsai, K. C. Chang, T. C. Chang, Y. E. Syu, K. H. Liao, B. H. Tseng, and S. M. Sze, Appl. Phys. Lett., 2012, 101(11), 112906.
[76] S. Tappertzhofen, S. Menzel, I. Valov, and R. Waser, Appl. Phys. Lett., 2011, 99,
203103.
[77] C. Schindler, S. C. P. Thermadam, R. Waser, and M. N. Kozicki, IEEE Trans. Electron Devices, 2007, 54(10), 2762–2768.
[78] K. C. Chang, T. M. Tsai, T. C. Chang, H. H. Wu, K. H. Chen, J. H. Chen, T. F. Young, T. J. Chu, J. Y. Chen, C. H. Pan et al., IEEE Electron Device Lett., 2013, 34(4), 511–513.
[79] K. C. Chang, T. M. Tsai, R. Zhang, T. C. Chang, K. H. Chen, J. H. Chen, T. F. Young, J. C. Lou , T. J. Chu, C. C. Shih et al., Appl. Phys. Lett., 2013, 103, 083509.
[80] K. C. Chang, C. H. Pan, T. C. Chang, T. M. Tsai, R. Zhang, J. C. Lou, T. F. Young, J. H. Chen, C. C. Shih, T. J. Chu et al., IEEE Electron Device Lett., 2013, 34(5), 617–619.
[81] S. B. Long, L. Perniola, C. Cagli, J. Buckley, X. J. Lian, E. Miranda, F. Pan, M. Liu, and J. Sune, Sci. Rep., 2013, 3, 2929.
[82] S. B. Long, X. J. Lian, C. Cagli, L. Perniola, E. Miranda, M. Liu, and J. Sune, IEEE Electron Device Lett., 2013, 34(8), 999–1001.
[83] T. M. Tsai, K. C. Chang, T. C. Chang, G. W. Chang, Y. E. Syu, Y. T. Su, G. R. Liu, K. H. Liao, M. C. Chen, H. C. Huang, Y. H. Tai, D. S. Gan, C. Ye, H. Wang, and S. M. Sze, IEEE Electron Device Lett., 2012, 33(12), 1693–1695.
[84] D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nat. Nanotechnol., 2010, 5, 148–153.
[85] W. Y. Chang, C. Lin, J. He, and T. Wu, Appl. Phys. Lett., 2010, 96, 242109.
[86] C. Walczyk, C. Wenger, R. Sohal, M. Lukosius, A. Fox, J. Da˛browski, D. Wolansky, B. Tillack, H.-J. M€ussig, and T. Schroeder, J. Appl. Phys., 2009, 105,
114103.
[87] J. Shin, I. Kim, K. P. Biju, M. Jo, J. Park, J. Lee, S. Jung, W. Lee, S. Kim,
and S. Park, J. Appl. Phys., 2011, 109, 033712.
[88] M. J. Lee, C. B. Lee, D. S. Lee, S. R. Lee, M. Chang, J. H. Hur, Y. B. Kim, C. J. Kim, D. H. Seo, S. Seo, U. I. Chung, I. K. Yoo, and K. Kim, Nature Mater., 2011, 10, 625–630.
[89] N. Xu, L. F. Liu, X. Sun, C. Chen, Y. Wang, D. D. Han, X. Y. Liu, R. Q. Han, J. F. Kang, and B. Yu, Semicond. Sci. Technol., 2008, 23, 075019.
[90] W. F. Chung, T. C. Chang, H. W. Li, S. C. Chen, Y. C. Chen, T. Y. Tseng,
and Y. H. Tai, Appl. Phys. Lett., 2011, 98(15), 152109.
[91] T. C. Chen, T. C. Chang, T. Y. Hsieh, C. T. Tsai, S. C. Chen, C. S. Lin, M.
C. Hung, C. H. Tu, J. J. Chang, and P. L. Chen, Appl. Phys. Lett., 2010, 97(19),
192103.
[92] S. W. Tsao, T. C. Chang, S. Y. Huang, M. C. Chen, S. C. Chen, C. T. Tsai, Y. J. Kuo, Y. C. Chen, and W. C. Wu, Solid-State Electron., 2010, 54(12), 1497–1499.
[93] R. A. Street, Adv. Mater., 2009, 21(20), 2007–2022.
[94] T. P. Ma and J. P. Han, IEEE Electron Device Lett., 2002, 23(7), 386–388.
[95] S. Tehrani et al., Proc. IEEE, 2003, 91(5), 703–714.
[96] M. Wuttig and N. Yamada, Nature Mater., 2007, 6(11), 824–832.
[97] R. Waser and M. Aono, Nature Mater., 2007, 6(11), 833–840.
[98] A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, O. Jambois, C. Labbe, B. Garrido, R. Rizk, and A. J. Kenyon, J. Appl. Phys., 2012, 111(7), 074507-1–074507-9.
[99] J. Yao, Z. Z. Sun, L. Zhong, D. Natelson, and J. M. Tour, Nano Lett., 2010, 10(10), 4105–4110.
[100] R. Thangappan, S. Kalaiselvam, A. Elayaperumal, and R. Jayavel,, Appl. Surf. Sci., 2012, 261, 770–773.
[101] A. Garbout, I. Taazayet-Belgacem Ben, and M. Ferid, J. Alloys Compounds, 2013, 573, 43–52.
[102] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, Wiley, New York,
NY, USA, 2006.
[103] A. Mehonic, S. Cueff, M. Wojdak, S. Hudziak, C. Labbe, R. Rizk, and A. J. Kenyon, Nanotechnology, 2012, 23(45), 455201.
[104] C. Guillén and J. Herrero, Vacuum, 2006, 80(6), 615–620.
[105] W. H. Guan, S. B. Long, Q. Liu, M. Liu, and W. Wang, IEEE Electron Devices Lett., 2008, 29(5), 434–437.
[106] J. J. Yang, M. D. Pickett, X. M. Li, D. A. A. Ohlberg, D. R. Stewart, and R. S. Williams, Nature Nanotechnol., 2008, 3, 429–433.
[107] M. Q. Snyder, W. J. DeSisto, and C. P. Tripp, Appl. Surf. Sci., 2007, 253(24), 9336–9341.
[108] H. S. P. Wong, H. Y. Lee, S. Yu et al., Proc. IEEE, 2012, 100(6), 1951–1970.
[109] S. B. Long, X. J. Lian, T. C. Ye, C. Cagli, L. Perniola, E. Miranda, M. Liu, J. Sune, IEEE Electron Device Lett., 2013, 34(5), 623–625.
[110] D. Kuzum, R. G. D. Jeyasingh, B. Lee, and H. S. P. Wong, Nano Letters, 2012, 12, 2179.
[111] S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, Nano Letters, 2010, 10, 1297.
[112] M. Ziegler, R. Soni, T. Patelczyk, M. Ignatov, T. Bartsch, P. Meuffels, H. Kohlstedt, Adv. Funct. Mater., 2012, 22 (13), 2744.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code