Responsive image
博碩士論文 etd-0903103-170513 詳細資訊
Title page for etd-0903103-170513
論文名稱
Title
嗜高溫纖維分解菌纖維分解酵素的探討
Characterization of cellulytic enzyme for thermophilic bacteria
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2003-07-04
繳交日期
Date of Submission
2003-09-03
關鍵字
Keywords
纖維分解酵素、木質素分解酵素
Geobacillus thermoleovorans T4, cellulase, xylanase
統計
Statistics
本論文已被瀏覽 5748 次,被下載 16424
The thesis/dissertation has been browsed 5748 times, has been downloaded 16424 times.
中文摘要
三株從高雄糖廠及堆肥中篩出的嗜高溫好氧菌Geobacillus thermoleovorans T4、Bacillus subtilis b5和Bacillus licheniformis b6,都可以在含有纖維素的培養液中生長。本實驗發現G. thermoleovorans T4則同時具有cellulases和xylanase酵素活性;是本種細菌首先被報導具有纖維素分解能力的菌株,其endoglucanase可作用溫度和酸鹼度範圍分別在30-100℃和pH 4.0-8.0;β-glucosidase可作用溫度和酸鹼度範圍分別在40-90℃和pH 5.0-9.0;exoglucanase可作用溫度在30-90℃;xylanase可作用溫度範圍在30-90℃。如與G. thermoleovorans K-3d的xylanase相比較;可作用溫度範圍相同,但可作用酸鹼值範圍比之更大,為pH 3.0-10.0之間,具有工業應用的價值。而B. subtilis b5和B. licheniformis b6亦具有cellulase的活性,且具有耐高溫的特質。B. subtilis b5的endoglucanase在100℃下1小時的熱穩定性仍保有60%的活性,比所有已知Bacillus屬的熱穩定性都要高,可作用酸鹼值為pH 4.0-7.5之間。B. licheniformis b6的endoglucanase其熱穩定性是在60℃下1小時仍然非常穩定,但隨著溫度上升,酵素的穩定性就越差;可作用酸鹼值為pH 4.0-9.0之間。
Abstract
Three thermophilic aerobic bacterial strain, Geobacillus thermoleovorans T4, Bacillus subtilis b5 and Bacillus licheniformis b6 were isolated from the wastewater of a Taiwan Sugar Company sugar refinery in Kaohsiung. All strains were capable of growth in cellulose containing medium. We found out that G. thermoleovorans T4 possessed both of the activity of cellulses and xylanase. This was the first report ever in this bacterial spices. Its endoglucanase was active at temperatures ranging from 30℃ to 100℃, and pH ranging from 4.0 and 8.0. Its β-glucosidase activities could be measured at 40℃ - 90℃ and pH 5.0 - 9.0. Its xylanase was active from 30℃ to 90℃ and pH from 3.0 to 10.0, while the exoglucanase was active at temperatures from 30℃ to 90℃. The pH values of xylasnase was better than G. thermoleovorans K-3d. This enzyme was worth of possible in industry application. Both of B. subtilis b5 and B. licheniformis b6 contained a thermoactive endoglucanase. The endoglucanase of B. subtilis b5 was active at pH values between 4.0 and 7.5, and was thermostable at 100℃ for at least 1 hour ( retaining 60% of the original activity ). The stability of this enzyme was better than all known enzymes extracted from Bacillus spices. The endoglucanase of B. licheniformis b6 was active at pH values between 4.0 and 9.0, and thermostable at 60℃ for least 1 hour.
目次 Table of Contents
目錄
中文摘要………………………………………………………………Ⅰ
英文摘要………………………………………………………………Ⅱ
前言…………………………………………………………………… 1
實驗目的………………………………………………………………20
材料與方法……………………………………………………………21
結果……………………………………………………………………28
討論……………………………………………………………………37
結論與建議……………………………………………………………41
參考文獻………………………………………………………………43
參考文獻 References
參考文獻

Acebal, C., Castillon, M. P., Estrada, P., Mata, I., Costa, E., Aguado, J., Romero, D., Jimenez, F. 1986. Enchanced cellulase production from Trichoderma reesei Q M 9414 on physically treated wheat straw. Appl. Microbiol. Biotechnol. 24 : 218-223.

Ahmad, S., Scopes, R. K., Rees, G. N., Patel, B. K. 2000. Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore- forming bacterium. Int. J. Syst. Evol. Microbiol. 50 : 517-523.

Ando, S., Ishida, H., Kosugi, Y., Ishikawa, K. 2002. Hyperthermostable endoglucanase from Pyrococcus horikoshi. Appl. Envir. Microbiol. 68 : 430-433.

Beguin, P., Aubert, J. P. 1993. The biological degradation of cellulose. FEMS. Microbiol. Rev. 13 : 25-58.

Bhat, M. K., Bhat, S. 1997. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Advances. 15 : 583-620.

Biely, P. 1985. Microbial xylanolytic systems. Trends. Biotechnol. 3 : 286-290.

Birsan, C., Johnson, P., Joshi, M., MacLeod, A., McIntosh, L., Monem, V., Nitz, M., Rose, D. R., Tull, D., Wakarchuck, W. W., Wang, Q., Warren, R. A., White, A., Withers, S. G. 1998. Mechanisms of cellulases and xylanases. Biochem. Soc. Trans. 26 : 156-160.

Bouveng, H. O. 1961. Phenylisocyanate derivatives of carbohydrates.Ⅱ. Location of O-acetyl groups in brich xylan. Acta. Chem. Scand. 15 : 96-100.

Bradford M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 : 248-254.
Breccia, J. D., Siñeriz, F., Baigorí, M. D., Castro, G. R., Hatti-Kaul, R. 1998. Purification and characterization of a thermostable xylanase from Bacillus amyloliquefaciens. Enzyme. Microbial. Technol. 22 : 42-49.

Buchert, J., Ranua, M., Siika-aho, M., Pere, J., Viikari, L. 1994. Trichoderma reesei cellulases in the bleaching of kraft pulp. Appl. Microbiol. Biotechnol. 40 : 63-78.

Christakopoulos, P., Hatzinikolaou, D. G., Fountoukidis, G., Kekos, D., Claeyssens, M., Macris, B. J. 1999. Purification and mode of action of an alkali-resistant endo-1,4-beta-glucanase from Bacillus pumilus. Arch. Biochem. Biophys. 364 : 61-66.

Christov, L. P., Prior, B. A. 1993. Esterases of xylan-degrading microorganisms: production, properties, and significance. Enzyme Microbiol. Technol. 15 : 460-475.

Claus, D., Berkeley, R. C. W. 1986. Genes Bacillus Cohn 1872. In: Bergey’s Manual of Systematic bacteriology, pp.1105-1139. vol. 2. Sneath P. H. A., Mair N. S., Sharpe M. N., Holt J. G., Eds., Williams and Wilkins, Baltimore.

Converse, A. O., Kwarteng, I. K., Grethlein, H. E., Ooshima, H. 1989. Kinetics of thermochemical pretreatment of lignocellosic materials. Appl. Microbiol. Biotechnol. 20/21 : 63-78.

Copa-Patino, J. L., Kim, Y. G., Broda, P. 1993. Production and initial characterization of the xylan-degrading system of Phanerochaete Chrysosporium. Appl. Microbiol. Biotechnol. 40 : 69-76.

Cosgrove, D. J. 1998. Cell Walls: Structures, Biogenesis, and Expansion. In: Plant Physiology. pp.409-443., Taiz L., Zeiger E., Eds., Sinauer Associates, Inc, Sunderland.

Coughlan, M. P. 1985. Cellulase: production properties and application. Biochem. Soc. Trans. 13 : 405-406.

Coughlan, M. P., Hazlewood, G. P. 1985. β-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and application. Biotech. Appl. Biochem. 17 : 231-241.

Degryse, E., Glansdorff, N., Pierard, A. 1978. A comparative analysis of extreme thermophilic bacteria belonging to the genus Thermus. Arch. Microbiol. 30 : 189-196.

Dhillon, A., Gupta, J. K., Jauhari, B. M., Khanna, S. 2000. A cellulase-poor, thermostable, alkalitolerant xylanase produced by Bacillus circulans AB 16 grown on rice straw and its application in biobleaching of eucalyptus pulp. Biore. Technol. 73 : 273-277.

Dhillon, A., Gupta, J. K., Khanna, S. 2000. Enhanced production, purification and characterisation of a novel cellulase-poor thermostable, alkalitolerant xylanase from Bacillus circulans AB 16. Process. Biochem. 30 : 849-856

Dierick, N. A. 1989. Biotechnology acids to improve feed and feed digestion: enzyme and fermentation. Aech. Arim. Nutr. Berlin. 39 : 241-261.

Endo, K., Hakamada, Y., Takizawa, S., Kubota, H., Sumitomo, N., Kobayashi, T., Ito, S. 2001. A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: enzymatic properties, and nucleotide and deduced amino acid sequences. Appl. Microbiol. Biotechnol. 57 : 109-116.

Esteban, A., Gomez-Acebo, E., de la Cal, M. A. 1982. Pulsus paradoxus in acute myocardial infarction. Chest. 81 : 47-50.

Golovacheva, R. S., Karavaiko, G. I. 1978. A new genus of thermophilic spore-forming bacteria. Sulfobacillus Microbiology (English traslation of Mikrobiologiya). 47 : 658-665.

Gomes, J., Purkarthofer, H., Hayn, M., Kapplmuller, J., Sinner, M., Steiner, W. 1993. Production of a high level of cellulase-free xylanase by the thermophilic fungus Thermomyces Lanuginosus in laboratory and pilot scales using lignocellulosic materials. Appl. Micro. Biotechnol. 39 : 700-707.

Grabski, A. C. Jeffries, T. W. 1991. Production, purification and characterization of β-(1-4)-endoxylanase of Streptomyces roseiscleroticus. Appl. Environ. Microbiol. 57 : 987-992.

Grohmann, K., Himmel, M., Rivard, C., Tucker, M., Baker, J. 1984. Chemical-mechanical methods for the enhanced utilization of straw. Biotechnol. Bioeng. Symp. 14 : 137-157.

Grohmann, K., Torget, R., Himmel, M. 1985. Optimization of dilute acid pretreatment of biomass. Biotechnol. Bioeng. Symp. 15 : 59-80.

Hakamada, Y., Endo, K., Takizawa, S., Kobayashi, T., Shirai, T., Yamane, T., Ito, S. 2002. Enzymatic properties, crystallization, and deduced amino acid sequence ofan alkaline endoglucanase from Bacillus circulans. Biochim. Biophys. Acta. 1570 : 174-180.

Hakamada, Y., Hatada, Y., Ozawa, T., Ozaki, K., Kobayashi, T., Ito, S. 2001. Identification of thermostabilizing residues in a Bacillus alkalinecellulase by construction of chimeras from mesophilic andthermostable enzymes and site-directed mutagenesis. FEMS. Microbiol. Lett. 195 : 67-72.

Hakamada, Y., Koike, K., Yoshimatsu, T., Mori, H., Kobayashi, T., Ito S. 1997. Thermostable alkaline cellulase from an alkaliphilic isolate, Bacillus sp. KSM-S237. Extremophiles. 1 : 151-156.

Hazlewood, G. P., Gilbert, H. J. 1993. Molecular biology of hemicellulases. Hemicelluloses and Hemicellulases. 103

Heitz, M., Capek-Menard, E., Koeberle, P. G., Gagne, J., Chornet, E., Overend, R. P., Taylor, J. D., Yu, E. 1991. Fractionation of Populus tremuloides at the pilot plant scale: optimization of steam explosion pretreatment conditions using the STAKE II technology. Bioresour. Technol. 35 : 23-32.

Hesselman, K., Aman, P. 1986. The effect of β-glucanase on the utilization of starch and nitrogen by broiler chicken fed on barley of low or high viscosity. Anim. Feed. Sci. Technol. 15 : 83-93.

Hreggvidsson, G. O., Kaiste, E., Holst, O., Eggertsson, G., Palsdottir, A., Kristjansson J. K. 1996. An Extremely Thermostable Cellulase from the Thermophilic Eubacterium Rhodothermus marinus. Appl. Envir. Microbiol. 62 : 3047 - 3049.

Hung, L., Hseu, T. H., Wey, T. T. 1991. Purification and characterization of an endoxylanase from Trichoderma koningii G-39. Biochem. J. 278 : 329-333.

Ito, S. 1997. Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles. 1 : 61-66.

Kang, S. W., Kim, S. W., Lee, J. S. 1995. Production of cellulase and xylanase in a bubble column using immobilized Aspergillus niger KKS. Appl. Biochem. Biotechnol. 53 : 101-106.

Khasin, A., Alchanati, I., Shoham, Y. 1993. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Envir. Microbiol. 59 : 1725-1730.

Kim, C. H. 1995. Characterization and substrate specificity of an endo-beta-1,4-D- glucanase I (Avicelase I) from an extracellular multienzyme complex of Bacillus circulans. Appl. Envir. Microbiol. 61 : 959 - 965.

Knappert, H., Grethlein, H., Converse, A. 1980. Pretreatment of wood for enzymatic hydrolysis. Biotechnol. Bioeng. Symp. 11 : 67-77.

La-Grange, D. C., Claeyssens, M., Pretorius, I. S., van-Zyl, W. H. 2000. Coexpression of the Bacillus pumilus beta-xylosidase (xynB) gene with the Trichoderma reesei beta-xylanase-2 (xyn2) gene in the yeast Saccharomyces cerevisae. Appl. Microbiol. Bitechnol. 54 : 195-200.

Lee, R. L., Charles, E. W., Tillman, U. G. 1999. Biocommodity engineering. Biotechnol. Prog. 15 : 777-793.

Lindberg, B., Rosell, K. G., Svensson, S. 1973. Position of O-acetyl groups in birch xylan. Svensk. Papperstid. 76 : 30-32.

Lundgren, K. R., Bergkvist, L., Hogman, S., Joves, H., Eriksson, G., Bartfai, T., Laan, J. V. D., Rosenbserg, E., Shoham, Y. 1994. TCF Mill Trial on softwood pulp with Korsnas thermostable and alkaline stable xylanase T6. FEMS. Microbiol. Rev. 13 : 365.

Mackenzie, C. R., Schneider, H. 1998. Production of acetyl xylan esterase by Trichoderma reesei and Schizophyllum commune. Can. J. Microbiol. 34 : 767-772.

Madlala, A. M., Biossoon, S., Singh, S., Christove, L. 2001. Xylanase induced reduction of chlorine dioxide consumption during elemental chlorine-free bleaching of different pulp types. Biotechnol. Lett. 23 : 345.

Manachini, P. L., Mora, D., Nicastro, G., Parini, C., Stackebrandt, E., Pukall, R., Fortina, M. G. 2000. Bacillus thermodenitrificans sp. nov., nom. rev. Int. J. Syst. Evol. Microbiol. 50 : 1331-1337.

Mandel, M., Reese, E. T. 1956. Induction of cellulose in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 73 : 263-278.

Mandels, M. 1985. Application of cellulases. Biochem Soc Trans 13 : 414-415.

Mawadza, C., Hatti-Kaul, R., Zvauya, R., Mattiasson, B. 2000. Purification and characterization of cellulases produced by two Bacillus strains. J. Biotechnol. 83 : 177-187.

Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31 : 426-428.

Mohn, W. W., Westerberg, K., Cullen, W. R., Reimer, K. J. 1997. Aerobic biodegradation of biphenyl and polychlorinated biphenyls by Arctic soil microorganisms. Appl. Envir. Microbiol. 63 : 3378-3384.

Morales, P., Sendra, J. M., Perez-Gonzalez, J. A. 1995. Purification and characterization of an arabinofuranosidase from Bacillus polymyxa expressed in Bacillus subtilis. Appl. Microbiol. Biotechnol. 44 : 112-117.

Nakamura, S., Wakabayashi, K., Nakai, R., Aono, R., Horikoshi, K. 1993. Purification and some properties of an alkaline xylanase from alkaliphilic Bacillus sp. strain 41M-1. Appl. Envir. Microbiol. 59 : 2311-2316.

Nazina, T. N., Tourova, T. P., Poltaraus, A. B., Novikova, E. V., Grigoryan, A. A., Ivanova, A. E., Lysenko, A. M., Petrunyaka, V. V., Osipov, G. A., Belyaev, S. S., Ivanov, M. V. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51 : 433-466.

Ozaki, K., Ito, S. 1991. Purification and properties of an acid endo-1,4-beta- glucanase from Bacillus sp. KSM-330. J. Gen. Microbiol. 137 : 41-48.

Phuong, L. P., Patricia, T., Michel, D., Pierre, S. 1998. Production of xylanases by Bacillus polymyxa using lignocellulosic wastes. Industrial. Crop. Product. 7 : 195-203.

Poutanen, K., Puls, J., Ratto, M., Viikari, L. 1987. Evaluation of different microbial xylanolytic systems. J. Biotechnol. 6 : 49-60.

Puls, J., Poutanen, K. 1989. Mechanisms of enzymic hydrolysis of hemicelluloses (Xylans) and procedures for determination of enzyme activities involved. In : Enzyme systems for Lignocellulose Degradation. pp. 151-165. Coughlan, M. P., Ed., Elsevier, London.

Puls, J., Schuseil, J. 1993. Chemestry of hemicellulose : relatioship between hemicellulose structure and enzyme requred for hydrolysis. In : Hemicelluloses and Hemicellulases. pp. 1-27. Coughlan, M. P. and Hazlewood, G. P., Eds., Protland Press, London.

Ramos, L. P., Breuil, C., Saddler, J. N. 1992. Comparison of steam pretreatment of eucalyptus, aspen, and spruce wood chips and their enzymatic hydrolysis. Appl. Biochem. Biotechnol. 34/35 : 37-48.

Robson, L. M., Chambliss, G. H. 1984. Characterization of the cellulolytic activity of a Bacillus isolate. Appl. Envir. Microbiol. 47 : 1039-1046.

Shoham, Y., Schwartz, Z., Khasin, A., Gat, O., Zosim, Z., Rosenberg, E. 1992. Delignification of wood oulo by thermostable xylanase from Bacillus stearothermophilus Strain T-6. Biodegradation. 3 : 207-218.

Singh, S., Pillay, B., Dilsook, V., Prior, B. A. 2000. Production and properties of hemicellulases by a Thermomyces lanuginosus strain. J. Appl. Microbiol. 88 : 975-982.

Singh, V. K., Kumar, A. 1998. Production and purification of an extracellular cellulase from Bacillus brevis VS-1. Biochem. Mol. Biol. Int. 45 : 443-452.

Subramaniyan, S., Prema, P. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS. Microbiol. Lett. 183 : 1-7.

Subramaniyan, S., Prema, P. 2002. Biotechnology of microbial xylanases : enzymology, molecular biology, and application. Crit. Rev. Biotechnol. 22 : 33-64.

Sung, M. H., Kim, H., Bae, J. W., Rhee, S. K., Jeon, C. O., Kim, K., Kim, J. J., Hong, S. P., Lee, S. G., Yoon, J. H., Park, Y. H., Baek, D. H. 2002. Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int. J. Syst. Evol. Microbiol. 52 : 2251-2255.
Sunna, A., Prowe, S. G., Stoffregen, T., Antranikian, G. 1997. Characterization of the xylanases from the new isolated thermophilic xylan-degrading Bacillus thermoleovorans strain K-3d and Bacillus flavothermus strain LB3A. FEMS Microbiol. Lett. 148 : 209-216.

Teunissen, M. J., de Kort, G. V., Op den Camp, H. J., Huis in 't Veld, J. H. 1992. Production of cellulolytic and xylanolytic enzymes during growth of the anaerobic fungus Piromyces sp. on different substrates. J. Gen. Microbiol. 138 : 1657-1664.

Timell, T. E. 1964. Wood hemicelluloses. I Adv Carbohydr Chem 19 : 247-302.

Timothy, S. M., Don, L. C. 1997. Purification and characterization of an alkaline xylanase from Streptomyces viridosporus T7A. Enzyme Microbial. Technol. 21 : 160-164.

Toget, R., Hatzis, C., Hayward, T. K., Hsu, T. A., Philippidis, G. P. 1996. Optimization of reverse-flow, two-temperature, dilute-acid pretreatment to enhance biomass conversion to enthanol. Appl. Biochem. Biotechnol. 57/58 : 85-101.

Toget, R., Walter, P., Himmel, M., Grohmann, K. 1991. Dilute sulfuric acid pretreatment of corn residues and short rotation woody crops. Appl. Biochem. biotechnol. 28/29 : 75-86.

Wang, L., Dale, B. E., Yurttas, L., Goldwasser, I. 1998. Cost estimates and sensitivity analysis for the ammonia fiber explosion process. Appl. Biochem. Biotechnol. 70/72 : 51-66.

Whistler, R. L., Richards, E. L. 1970. Hemicelluloses. In: The Carbohydrates. pp. 447-469. Vol. 2a. Pigman, W. and Horton, D., Ed., Academic Press, New York.

White, D., Sharp, R. J., Priest, F. G. 1993. A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie. Leeuwenhoek. 64 : 357-386.

Winterhalter, C., Liebl, W. 1995. Two Extremely Thermostable Xylanases of the Hyperthermophilic Bacterium Thermotoga maritima MSB8. Appl. Envir. Microbiol. 61 : 1810-1815.

Wood, T. M. 1985. Properties of cellulolytic enzyme systems. Biochem. Soc. Trans. 13 : 407-410.

Woodword, J. 1984. Xylanases : functions, properties and applications. Top. Enzyme. Ferment. Biotechnol. 8 : 9-30.

Zarilla, K. A., Perry, J. J. 1987. Bacillus thermoleovorans, sp. nov. a spciese of obligately thermophilic hydrocarbon utilizing endospore -forming bacteria. System. Appl. Microbiol. 9 : 258-264.

吳奇生,1987。利用纖維素物質發酵生產化學合成中間產物之研究。國立台灣大學農業化學研究所碩士論文。

李春蓮,2000。Bacillus licheniformis聚木糖分解酵素之純化與生化特性探討。國力屏東科技大學食品科學系碩士論文。

陳乃菁、余碧、邱文石、曾浩洋,1993。碳源及培養條件對Trichoderma reesei生產纖維素脢之研究。農林學報。42, 9-17.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code