Responsive image
博碩士論文 etd-0903105-221204 詳細資訊
Title page for etd-0903105-221204
論文名稱
Title
數值模擬及微粒子影像速度儀於微混合器效能分析之應用
Mixing Performance Evaluation of a Micromixer Utilizing CFD and micro PIV system
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-27
繳交日期
Date of Submission
2005-09-03
關鍵字
Keywords
雷射誘導螢光、混合效率、計算流體力學、微混合器、微粒子影像測速儀
particle., computational fluid dynamics, Micromixer, Laser induced fluorescence, micro-particle image velocimetry
統計
Statistics
本論文已被瀏覽 5698 次,被下載 3562
The thesis/dissertation has been browsed 5698 times, has been downloaded 3562 times.
中文摘要
本文以數值模擬及實驗操作探討T型微流體混合器中不同阻塊設計對其操作效能之影響,論文首先使用商業軟體CFD-ACE模擬流體,以Navier-Stokes統御方程式為基礎,建立該混合器模型,以分析不同Re數之操作條件下的混合效率,及在該操作條件下所產生的壓力降,並進而獲得微流道內阻塊之最佳設計參數,以設計出一低壓力降高混合效率之高效能微流體混合器。研究中並使用微機電製程技術,於低成本之鈉玻璃中製作該微混合器晶片,並利用自行架設之微粒子影像測速儀(Micro-Particle Image Velocimetry, Micro-PIV)及雷射誘導螢光系統(Laser-induced-fluorescence system, LIF system)對該混合器進行實驗測試。本研究採用直徑為3.3 μm之紅色螢光塑膠球進行Micro-PIV測試,以求得樣本流體於微流道中之實際流線。並以LIF系統所擷取之影像,利用影像分析技術以評估該混合器之混合效能。結果發現,流體於微流道流動時,將因傾斜不同角度之阻塊作用,而產生橫向對流效應,並因此增加流體接觸面積,進而提高其混合效率。實驗及模擬結果顯示,該微流體混器於Re=0.75時,可以提供高達95%以上之混合效率,且其壓力降僅有1426 Pa。研究中並發現,當微混合器中之阻塊傾斜角度愈大、管道愈深及阻塊寬度愈窄的設計參數下,其壓力降愈小,且不明顯影響該混合器之混合效率。本研究之成果,不僅發展出一低成本且高效能之Micro-PIV系統,其分析結果亦可以做為未來被動式微混合器設計之參考。
Abstract
This study proposed a novel design of the passive micromixer which employed several quadrilateral shaped blocks in the micro channel to enhance mixing. Both numerical and experimental investigations have been carry out. Commercial software CFD-ACE was used to simulate the flows. The simulation results showed great agreement with the measured results, implying that Navier–Stokes’ equations still effectively governs the micro-scope flows in this scale. It is effective to enhance mixing efficiency over wide flow rate ranges. Mixing performance was characterized by Laser-induced-fluorescence system (LIF system) to quantity the concentration distribution in the micro channel .
In addition, Microscopic flow visualization was also setup to visualize the flow field in the micro mixer. Micro-particle image velocimetry (Micro-PIV) was used to measure the flow fields in microchannel filled with deionized water (DI water) . The system utilizes an epifluorescent microscope, 3.3 μm diameter seed particles, and an high speed CCD camera to record particle-image fields. The vector fields are analyzed using a double-frame cross-correlation algorithm. The stochastic influence of Brownian motion plays a significant role in the accuracy of instantaneous velocity measurements.
目次 Table of Contents
中文摘要 i
ABSTRACT ii
目 錄 iii
圖目錄 vi
符號說明 xi
名詞介紹 xi
第1章 諸論 1
1.1 微機電系統 1
1.2 研究背景及動機 1
1.3 擴散過程及混沌流場 3
1.4 文獻回顧 5
1.4.1 被動式混合器(passive mixer) 5
1.4.2 主動式混合器(active mixer) 7
1.4.3 微粒子影像測速儀Micro-PIV SYSTEM 8
1.4.4 混合效率指數 10
第2章 數值方法 26
2.1 肯德深數(Knudsen Number) 26
2.2 基本假設及統御方程式 27
2.3 模擬軟體簡介 29
2.4 模擬步驟 30
第3章 實驗架設 33
3.1 微粒子影像速度儀 33
3.1.1 PIV理論分析 34
3.1.2 實驗步驟 36
3.2 螢光粒子 36
3.3 模擬晶片設計 37
3.4 晶片製造 38
3.5 實驗晶片計設 40
第4章 結果與討論 48
4.1 混合結果分析 48
4.1.1 實驗結果及數值分析 48
4.2 流場結果分析 53
4.2.1 實驗結果及數值分析 53
第5章 晶片之影響因子 71
5.1 阻塊斜率之影響 71
5.2 晶片深度之影響 72
5.3 阻塊厚度晶片之影響 73
5.4 最佳化晶片 73
第6章 結論與未來展望 84
參考文獻 88
參考文獻 References
1. E. John, L. Dorian, and P. Albert, "Planar Laminar Mixer," Proceeding of the IEEE 10th Annual Workshop of MEMS, vol. 96-101 (1997).
2. N. Schwesinger, T. Frank , and H. Wurmus, "A modular microfluid system with an integrated micromixer," Journal of Micromechanics and Microengineering, vol. 6, pp. 99-102 (1996).
3. M. Koch, H. Witt, A. G. R. Evans, and A. Brunnschweiler, "Improved characterization technique for micromixers," Journal of Micromechanics and Microengineering, vol. 9, pp. 156-158 (1999).
4. M. S. Munson and P. Yager, "Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer," Analytica Chimica Acta, vol. 507, pp. 63-71 (2004).
5. Y. Lin, G. J. Gerfen, D. L. Rousseau, and S. R. Yeh, "Ultrafast microfluidic mixer and freeze-quenching device," Analytical Chemistry, vol. 75, pp. 5381-5386 (2003).
6. V. Mengeaud, J. Josserand, and H. H. Girault, "Mixing processes in a zigzag microchannel: Finite element simulations and optical study," Analytical Chemistry, vol. 74, pp. 4279-4286 (2002).
7. S. J. Park, J. K. Kim, J. Park, S. Chung, C. Chung, and J. K. Chang, "Rapid three-dimensional passive rotation micromixer using the breakup process," Journal of Micromechanics and Microengineering, vol. 14, pp. 6-14 (2004).
8. H. Chen and J. C. Meiners, "Topologic mixing on a microfluidic chip," Applied Physics Letters, vol. 84, pp. 2193-2195 (2004).
9. R. A. Vijayendran, K. M. Motsegood, D. J. Beebe, and D. E. Leckband, "Evaluation of a three-dimensional micromixer in a surface-based biosensor," Langmuir, vol. 19, pp. 1824-1828 (2003).
10. R. H. Liu, M. A. Stremler, K. V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe, "Passive mixing in a three-dimensional serpentine microchannel," Journal of Microelectromechanical Systems, vol. 9, pp. 190-197 (2000).
11. T. J. Johnson, D. Ross, and L. E. Locascio, "Rapid microfluidic mixing," Analytical Chemistry, vol. 74, pp. 45-51 (2002).
12. A. D. Stroock, S. K. W. Dertinger, A. Ajdari, I. Mezic, H. A. Stone, and G. M. Whitesides, "Chaotic mixer for microchannels," Science, vol. 295, pp. 647-651 (2002).
13. T. G. Kang and T. H. Kwon, "Colored particle tracking method for mixing analysis of chaotic micromixers," Journal of Micromechanics and Microengineering, vol. 14, pp. 891-899 (2004).
14. M. K. Jeon, J. H. Kim, J. Noh, S. H. Kim, H. G. Park, and S. I. Woo, "Design and characterization of a passive recycle micromixer," Journal of Micromechanics and Microengineering, vol. 15, pp. 346-350 (2005).
15. S. Bohm, K. Greiner, and S. Schlautmann, "A rapid vortex micromixer for studying high-speed chemical reactions," Technical Proc. Micro Total Analysis Systems Micro TAS (2001).
16. W. L. W. Hau, L. M. Lee, Y. K. Lee, and Y. Zohar, "Electrokinetically-driven vortical motion for mixing of liquids in a microchannel," 7th international Conference on Miniaturized Chemical and Biochemical Analysts Systems, pp. 491-495 (2003).
17. A. A. Deshmukh, D. Liepmann, and A. Pisano, "Characterization of a micro-mixing, pumping, and valving system," Transducers'01,11th Int. Conf. on Solid-STate Sensors and Actuators, pp. 779-782 (2001).
18. X. Z. Niu and Y. K. Lee, "Efficient spatial-temporal chaotic mixing in microchannels," Journal of Micromechanics and Microengineering, vol. 13, pp. 454-462 (2003).
19. L. H. Lu, K. S. Ryu, and C. Liu, "A magnetic microstirrer and array for microfluidic mixing," Journal of Microelectromechanical Systems, vol. 11, pp. 462-469 (2002).
20. Z. L. Tang, S. B. Hong, D. Djukic, V. Modi, A. C. West, J. Yardley, and R. M. Osgood, "Electrokinetic flow control for composition modulation in a microchannel," Journal of Micromechanics and Microengineering, vol. 12, pp. 870-877 (2002).
21. A. M. Lanzillotto, T. S. Leu, M. Amabile, and R. Samtaney, "A study of the structure and motion of fluidic microsystems," 28th AIAA Fluid Dynamics Conf. Snomass Village (1997).
22. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, "A particle image velocimetry system for microfluidics," Experiments in Fluids, vol. 25, pp. 316-319 (1998).
23. A. G. Koutsiaris, D. S. Mathioulakis, and S. Tsangaris, "Microscope PIV for velocity-field measurement of particle suspensions flowing inside glass capillaries," Measurement Science & Technology, vol. 10, pp. 1037-1046 (1999).
24. C. D. Meinhart, S. T. Wereley, and M. H. B. Gray, "Volume illumination for two-dimensional particle image velocimetry," Measurement Science & Technology, vol. 11, pp. 809-814 (2000).
25. Y. Sato, G. Irisawa, M. Ishizuka, K. Hishida, and M. Maeda, "Visualization of convective mixing in microchannel by fluorescence imaging," Measurement Science & Technology, vol. 14, pp. 114-121 (2003).
26. K. Shinohara, Y. Sugii, K. Okamoto, H. Madarame, A. Hibara, M. Tokeshi, and T. Kitamori, "Measurement of pH field of chemically reacting flow in microfluidic devices by laser-induced fluorescence," Measurement Science & Technology, vol. 15, pp. 955-960 (2004).
27. S. Devasenathipathy, J. G. Santiago, and K. Takehara, "Particle tracking techniques for electrokinetic microchannel flows," Analytical Chemistry, vol. 74, pp. 3704-3713 (2002).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code