Responsive image
博碩士論文 etd-0903107-155456 詳細資訊
Title page for etd-0903107-155456
論文名稱
Title
非連續絕緣埋層薄膜電晶體之研究
Study of TFT with Non-Continuous Buried Oxide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-07-16
繳交日期
Date of Submission
2007-09-03
關鍵字
Keywords
薄膜電晶體
TFT
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
在本論文中,我們提出一種新的非連續絕緣埋層薄膜電晶體的結構與製作方法,可有效解決自我加熱效應及浮體效應。傳統的SOI元件因絕緣埋層完全阻隔,造成嚴重的自我加熱效應(Self-Heating Effect),將導致汲極電流下降、元件可靠度降低。而浮體效應(Floating-Body Effect)會使元件提早崩潰及造成扭結現象(Kink)。

隨著元件尺寸的縮小,SOI所面臨的問題日益嚴重,有鑑於此,我門提出一非連續絕緣埋層薄膜電晶體製作方法,採用各種非連續絕緣技術,形成Pass Way散熱通道,可將主動區的的熱能直接排到基板。有效解決自我加熱效應及浮體效應,而且非連續絕緣埋層技術可繁衍出多種元件結構。

我門先經由ISE TCAD 10.0模擬,印證其具有比SOI元件,更好的散熱效果。再去國家奈米實驗室,實作出元件,證明其可行性,且製作成本也比SOI低。我們試圖提供一種思維,既然SOI元件無法克服元件縮小化,所造成的自我加熱效應及浮體效應,那就讓非連續絕緣埋層薄膜電晶體,來延伸莫爾定律。
Abstract
In this thesis, we propose a new fabrication and process solution with discontinuous insulated buried TFT (thin film transistor), it can dissolve “self-heating effect” and “floating body effect”. A conventional SOI (silicon-on-insulator) device has serious “self-heating effect” due to a wholly isolated buried layer, and “floating body effect” will cause device breakdown early and produce “kink effect”.

Along with device miniaturization, SOI faces more and more issues, so we announce a new fabrication and process solution with discontinuous insulated buried TFT (thin film transistor), all kinds of discontinuous isolated layer tech are concerned to form “pass way”, means “heating dissipated channel”. It can guide heat in active region to aligned substrate directly. So “self-heating effect” and “floating body effect” are suppressed efficiently, and such discontinuous isolated layer tech can also promise many different constructional structures.

We approve such creation is better than SOI device in thermal-guidance through ISE TCAD 10.0 simulated tool. Device fabrication is completed in NDL (national device laboratory) and verify it’s feasibility there, the lower cost is also confirmed, we try a new concept, if SOI device can overcome device miniaturization, the “self-heating effect” and “floating body effect” cannot be suppressed well, than importing the discontinuous insulated buried TFT will give a possibility to endorse “Moore’s Law”.
目次 Table of Contents
第一章 緒論 1
第二章 新元件結構的模擬 8
2.1 SOI元件與非連續絕緣埋層TFT的結構模擬 8
2.2 自我加熱效應 (Self Heating Effect) 9
2.3 浮體效應 (Floating Body Effect) 12
2.4 衝撞游離效應(Impact Ionization Effect) 14
2.5 IDS - VDS特性曲線之探討
152.6 Log (IDS) - VGS特性曲線之探討 21
2.7分析靜電位能及電子溫度 27
2.8 分析靜電位能及晶格溫度 30
第三章 新元件的實作過程 33
3.1 Layout製程圖
333.2 製作Pass Way 37
3.3 製作Active Region 40
3.4 製作Gate 45
3.5 製作Contact Hole 47
3.6 製作金屬層 49
第四章 實驗結果量測與討論
544.1 半導體元件參數量測說明與注意事項 54
4.2 IDS - VDS特性曲線之探討 55
4.3 Log (IDS) - VGS特性曲線之探討
564.4 實作結論 57
4.5 實作元件製程照片總覽 58
第五章 結論與未來發展 65
Reference
附錄
參考文獻 References
[1] S. Veeraraghavan, J. G.. Fossum, “Short Channel Effects in SOI MOSFETs,” IEEE Trans. Electron Dev., Vol. 36, pp. 522, 1989.
[2] H. B. Bakoglu, “Circuits Interconnections and Packaging for VLSI,” Addison Wesley Publishing Company, Singapore., pp. 38 – 40, 1990.
[3] J. P. Coling, “Silicon-On-Isolator Technology: Materials to VLSI,” Kluwer Academic Publishers., pp. 107 - 108.
[4] A. J. Auberton, “Proceedings of the fourth international Symposium on Silicon-On-Insulator Technology and Device,” The Electrochemical Society., Vol. 90 – 6, pp. 544, 1990.
[5] R. R. Troutman, “Latchup in CMOS Technology,” Kluwer Academic Publishers, 1986.
[6] G. C. Messenger, M. S. Ash, “The Effects of Radiation Electronic System,” Van Nostrand Reinhold Company., pp. 307, 1986.
[7] T. Zheng, J. Luo, X. Zhang, “On pure self-heating effect of MOSFET in SOI,” Solid-State and Integrated-Circuit Technology, 2001. Proceedings. 6th International Conference., Vol. 01, pp. 665 - 668, 2001.
[8] Z. Sun, L. Liu, Z. Li, “Self-heating effect in SOI MOSFETs,” Solid-State and Integrated Circuit Technology, 1998. Proceedings. 1998 5th International Conference., pp. 572 – 574, 1998.
[9] R. J. T. Bunyan, M. J. Uren, J. C. Alderman, W. Eccleston, “Use of noise thermometry to study the effects of self-heating in submicrometer SO1 MOSFET’s,” IEEE Electron Dev., vol. 13, No. 5, pp. 279 - 281, 1992.
[10] E. Haralson, B.G. Malm, T. Johansson, M. Ostling, “Influence of self heating in a BiCMOS on SOI technology,” Solid-State Device Research conference, 2004. ESSDERC 2004. Proceeding of the 34th European 21-23 Sept., pp. 337 – 340, 2004.
[11] Z. Xia, Y. Li, Y. Zhao, “The effect of self-heating on hot-carrier effects in deep submicron SOI/NMOS,” Microelectronics, 2000. Proceedings. 2000 22nd International Conference., Vol. 1, pp. 221 – 223, 2000.
[12] R. J. T. Bunyan, “Self-heating effects in sub-micron SOI-MOSFETS,” IEE Colloquium on Sub-Micron VLSI Reliability., pp. 4/1 - 4/4, 1992.
[13] D. A. Dallmann, K. Shenai, “Scaling Constraints Imposed by Self-Heating in Submicron SOI MOSFET”, IEEE Transactions, Vol 42, pp. 489 – 496, 1995.
[14] L. T. Su, J. E. Chung, D. A. Antoniadis, K. E. Goodson, M. I. Filk, “Measurement and modeling of self-heating in SOI nMOSFET’s,” IEEE Trans. Electron Devices, Vol. ED-41, pp. 698-675, Jan. 1994.
[15] Y. Apanovich, E. Lyumkis, B. Polsky, P. Blakey, “Non-isothermal analysis of breakdown in soi transistors,” IEEE Trans. Electron Devices, Vol. ED-40, pp. 2094-2096, Nov. 1993.
[16] M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, I. Policicchio, “Floating body effects in polysilicon thin-film transistors,” IEEE Trans. Electron Devices., Vol. 44, pp. 2234 – 2241, Dec. 1997.
[17] S. Krishnan, J. G. Fossum, “Grasping SOI floating-body effects,” Circuits and Devices Magazine, IEEE., Vol. 14, pp. 32 – 37, July. 1998.
[18] Y. C. Tseng, W. M. Huang, D. C. Diaz, J. M. Ford, J. C. S. Woo, “AC floating-body effects in submicron fully depleted (FD) SOI nMOSFETs and the impact on analog applications,” Electron Device Letters, IEEE ., Vol. 19, Issue 9, pp. 351 – 353, Sept. 1998.
[19] Y. C. Tseng, W. M. Huang, B. Ikegami, D. C. Diaz, J. M. Ford, J. C. S Woo, “Local floating body effect in body-grounded SOI nMOSFETs,” SOI Conference, 1997. Proceedings., 1997 IEEE International., pp. 26 – 27, Oct. 1997.
[20] B. Cole, S. Parke, “A Methode to Overcome Self-Heating Effects in SOI MOSFETs,” University/Government/Industry Microelectronics Symposium, 2003., pp. 295 – 297, July. 2003.
[21] Z. X. Zhang, Q. Lin, M. Zhu, C. L. Lin, “A new structure of SOI MOSFET for reducing self-heating effect,” Ceramics International, Vol. 30, Issue 7, pp. 1289-1293, 2004.
[22] W. Chen, L. Tian, Z. Li, “A novel Drain/Source On Insulator (DSOI) structure to fully suppress the floating-body and self-heating effects,” Solid-State and Integrated Circuit Technology, 1998 Proceedings., pp. 575 – 578, Oct. 1998.
[23] Y. Tian, R. Huang, X. Zhang, Y. Wang, “A Novel Nanoscaled Device Concept Quasi-SOI MOSFET to Eliminate the Potential Weaknesses of UTB SOI MOSFET,” IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 52, NO. 4, APRIL, 2005.
[24] C. K. Date, J. D. Plummer, “Suppression of the floating-body effect using SiGe layers in vertical surrounding-gate MOSFETs,” Electron Devices, IEEE Transactions., Vol. 48, Issue 12, pp. 2684 – 2689, Dec. 2001.
[25] M. Yoshimi, M. Terauchi, A. Nishiyama, O. Arisumi, A. Murakoshi, K. Matsuzawa, N. Shigyo, S. Takeno, M. Tomita, K. Suzuki, Y. Ushiku, H. Tango, “Suppression of the floating-body effect in SOI MOSFET's by the bandgap engineering method using a Si1-xGex source structure,” Electron Devices, IEEE Transactions., Vol. 44, Issue 3, pp. 423 – 430, March. 1997.
[26] F. Deng, R. A. Johnson, W. B. Dubbelday, G. A. Garcia, P. M. Asbeck, S. S. Lau, “Deep salicidation using nickel for suppressing the floating body effect in partially depleted SOI-MOSFET,” SOI Conference, 1996. Proceedings., 1996 IEEE International., pp. 78 – 79, Oct. 1996.
[27] K. Hieda, S. Takedai, M. Takahashi, M. Yoshimi, H. Takato, A. Nitayama, F. Horiguchi, “Floating-body effect free concave SOI-MOSFETs (COSMOS),” Electron Devices Meeting, 1991. Technical Digest., International., pp. 667 – 670, Dec. 1991.
[28] P. Y. Kuo, T. S. Chao, T. F. Le, “Suppression of the floating-body effect in poly-Si thin-film transistors with self-aligned Schottky barrier source and ohmic body contact structure,” Electron Device Letters, IEEE., Vol. 25, Issue 9, pp. 634 – 636, Sept. 2004.
[29] J. Roig, D. Flores, M. Vellvehi, J. Rebollo, J. Millan, “Novel techniques for reducing self-heating effects in silicon-on-insulator power devices,” Semiconductor Conference, 2001. CAS 2001 Proceedings. International., Vol. 2, pp. 493 – 496, Oct. 2001.
[30] M. Valdinoci, L. Colalongo, G. Baccarani, G. Fortunato, A. Pecora, I. Policicchio, “Floating body effects in polysilicon thin-film transistors” IEEE Electron Device Letters., Vol. 44, No. 2, pp. 2234-2241, June. 1997.
[31] 羅正中,張鼎張 譯, “半導體製程技術導論”,學銘圖書有限公司。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 34.228.213.183
論文開放下載的時間是 校外不公開

Your IP address is 34.228.213.183
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code