Responsive image
博碩士論文 etd-0903108-141455 詳細資訊
Title page for etd-0903108-141455
論文名稱
Title
以分子動力學研究單壁奈米碳管於水與真空環境下之機械性質與動態行為
Mechanical Properties and Dynamic Behaviors of Single-Wall Carbon Nanotubes in Water and Vacuum environment: A Molecular Dynamics Study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-05
繳交日期
Date of Submission
2008-09-03
關鍵字
Keywords
分子動力學、奈米碳管、機械性質
molecular dynamics, mechanical properties, carbon nanotube
統計
Statistics
本論文已被瀏覽 5722 次,被下載 22
The thesis/dissertation has been browsed 5722 times, has been downloaded 22 times.
中文摘要
本文利用分子動力學理論搭配第二代REBO勢能函數來模擬不同對掌性(10,10)與(17,0)單壁奈米碳管之機械性質與動態行為。本文研究分成兩部份:
1.奈米碳管在真空環境下之機械性質。研究方法係利用拉伸試驗以計算出單壁奈米碳管之應力應變行為,如此便可經由變形過程中得到各種不同物理量,其中包含降伏應力、最大應力與楊氏模數等。除此之外,在模擬的過程中我們經由原子的滑移向量(slip vector)參數來探討奈米碳管在拉伸時的動態行為及碳管破裂後之微結構變化。
2.奈米碳管在水中之機械性質。探討在不同管徑下,管內有不同水分子之分佈的結構,探討管內水分子對奈米碳管之機械性質的影響,並與真空環境中做比較。
Abstract
Molecular dynamics theory and second reactive empirical bond order (REBO) potential are employed to determine the mechanical and dynamic properties of (10,10) and (17,0) single-wall carbon nanotubes (SWNT). According to the different simulated environment, the article can be divided into two parts and discussed.
The mechanical properties of SWNT in vacuum environment are investigated by tensile process. The physical parameters can be obtained during the tensile process, for example, the yield stress and the Young’s modulus. In addition, the slip vector can be used to investigate the dynamic behaviors of carbon nanotubes during the tensile process and the variation of microstructure after carbon nanotubes broken.
Moreover, the mechanical properties of SWNT in the bulk water are also taken into account. In this section, we mainly investigate the effect of the structure of water molecules in the SWNT with different diameters of SWNT. Finally, the mechanical properties of SWNT influenced by water molecules inside the carbon nanotubes are investigated, and compare the results with those in vacuum environment.
目次 Table of Contents
目錄 I
圖目錄 III
表目錄 V
符號說明 VI
中文摘要 VIII
英文摘要 IX
第一章 緒論 1
1.1 研究動機與目的 1
1.2 奈米碳管簡介 5
1.3 奈米碳管之機械性質與結構特性研究文獻
回顧 10
1.4 奈米碳管與水分子研究文獻回顧 12
1.5 本文架構 13
第二章 分子動力學理論方法 14
2.1 勢能函數 15
2.1.1. 碳原子之作用勢能 15
2.1.2. 水分子與水分子間之作用勢能 16
2.1.3. 碳原子與水分子間之作用勢能 18
2.2 運動方程式 21
2.3 積分法則 22
2.4 時間步階選取 23
2.5 溫度修正 24
2.5.1 Rescaling方法 24
2.5.2 Nosé-Hoover方法 25
2.6 週期性邊界 27
第三章 分子動力學數值方法 28
3.1 鄰近原子表列數值方法 28
3.1.1 截斷半徑法(Cut-off method) 28
3.1.2 Verlet表列法 29
3.1.3 Cell Link表列法 30
3.1.4 Verlet表列結合Cell Link表列法 32
3.2 物理參數與無因次化 33
3.3 數值統計方法 35
3.3.1 原子級應力計算方法 35
3.3.2 滑移向量(Slip Vector) 38
3.4 模擬流程圖 40
第四章 結果分析與討論 41
4.1 單壁奈米碳管在真空中之機械性質 41
4.1.1 物理模型之建構 41
4.1.2 奈米碳管在真空中機械性質分析 43
4.2 單壁奈米碳管在水中之機械性質 61
4.2.1 物理模型之建構 61
4.2.2 奈米碳管在水中機械性質分析 64
第五章 結論與建議 71
5.1 結論 71
5.2 未來展望與建議 72
參考文獻 References
[1] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, "C60: Buckminsterfullerene," Nature 318, 162 - 163 (1985).
[2] S. Iijima, "Helical microtubules of graphitic carbon," Nature 354, 56 - 58 (1991).
[3] S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," Nature 363, 603 (1993).
[4] D. S. Bethune, C. H. Klang, M. S. d. Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls," Nature 363, 605 - 607 (1993).
[5] T. W. Ebbesen and P. M. Ajayan, "Large-scale synthesis of carbon nanotubes," Nature 358, 220 - 222 (1992).
[6] X. Zhao, M. Ohkohchi, M. Wang, S. Iijima, T. Ichihashi and Y. Ando, "Preparation of high-grade carbon nanotubes by hydrogen arc discharge," Carbon 35, 775-781 (1997).
[7] H. M. Cheng, F. Li, G. Su, H. Y. Pan and L. L. He, "Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons," Appl. Phys. Lett. 72, 3282 (1998).
[8] J. Qiu, Y. Li, Y. Wang, T. Wang, Z. Zhao, Y. Zhou, F. Li and H. Cheng, "High-purity single-wall carbon nanotubes synthesized from coal by arc discharge " Carbon 41, 2170-2173 (2003).
[9] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tománek, J. E. Fischer and R. E. Smalley, "Crystalline ropes of metallic carbon nanotubes," Science 273, 483 - 487 (1996).
[10] H. M. Cheng, F. Li, X. Sun, S. D. M. Brown, M. A. Pimenta, A. Marucci, G. Dresselhaus and M. S. Dresselhaus, "Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons " Chem. Phys. Lett. 289, 602-610 (1998).
[11] J.-P. Salvetat, J.-M. Bonard, N. H. Thomson, A. J. Kulik, L. Forro′, W. Benoit and L. Zuppiroli, "Mechanical properties of carbon nanotubes," Appl. Phys. A 69, 255–260 (1999).
[12] R. Ciocan, J. Gaillard, M. J. Skove and A. M. Rao, "Determination of the Bending Modulus of an Individual Multiwall Carbon Nanotube using an Electric Harmonic Detection of Resonance Technique " Nano Lett. 5, 2389-2393 (2005).
[13] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker, "Electronic structure of atomically resolved carbon nanotubes," Nature 391, 59-62 (1998).
[14] T. W. Odom, J.-L. Huang, P. Kim and C. M. Lieber, "Atomic structure and electronic properties of single-walled carbon nanotubes," Nature 391, 62-64 (1997).
[15] P. G. Collins, A. Zettl, H. Bando, A. Thess and R. E. Smalley, "Nanotube Nanodevice " Science 278, 100 - 102 (1997).
[16] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess and R. E. Smalley, "Single-Electron Transport in Ropes of Carbon Nanotubes " Science 275, 1922-1925 (1997).
[17] R. S. Ruoff and D. C. Lorents, "Mechanical and thermal properties of carbon nanotubes " Carbon 33, 925-930 (1995).
[18] H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert and R. E. Smalley, "Nanotubes as nanoprobes in scanning probe microscopy," Nature 384, 147 - 150 (1996).
[19] http://physicsworld.com/cws/article/news/31812.
[20] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs and C. Dekker, "Individual single-wall carbon nanotubes as quantum wires," Nature 386, 474 - 477 (1997).
[21] http://nanotechweb.org/cws/article/tech/27432.
[22] A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, "Storage of hydrogen in single-walled carbon nanotubes," Nature 386, 377 - 379 (1997).
[23] R. B. Pipes, S. J. V. Frankland, P. Hubert and E. Saether, "Self-consistent properties of carbon nanotubes and hexagonal arrays as composite reinforcements " Compos. Sci. Technol. 63, 1349-1358 (2003).
[24] http://nano.mtu.edu/PulsedLaserVaporization_start.html.
[25] S.-H. Tsai, C.-T. Shiu, S.-H. Lai and H.-C. Shih, "Tubes on tube—a novel form of aligned carbon nanotubes " Carbon 40, 1597-1600 (2002).
[26] M. M. J. Treacy, T. W. Ebbesen and J. M. Gibson, "Exceptionally high Young's modulus observed for individual carbon nanotubes," Nature 381, 678 - 680 (1996).
[27] E. W. Wong, P. E. Sheehan and C. M. Lieber, "Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes " Science 277, 1971 - 1975 (1997).
[28] J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, N. A. Burnham and L. Forró, "Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes," Phys.Rev.Lett. 82, 944 (1999).
[29] M. Yu, M. J. Dyer, G. D. Skidmore, H. W. Rohrs, X. Lu, K. D. Ausman, J. R. V. Ehr and R. S. Ruoff, "Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope," Nanotechnology 10, 244-252 (1999).
[30] M.-F. Yu, B. S. Files, S. Arepalli and R. S. Ruoff, "Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties," Phys.Rev.Lett. 84, 5552 - 5555 (2000).
[31] M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly and R. S. Ruoff, "Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load," Science 287, 637 - 640 (2000).
[32] F. Li, H. M. Cheng, S. Bai, G. Su and M. S. Dresselhaus, "Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes," Appl. Phys. Lett. 77, 3161 (2000).
[33] E. Hernández, C. Goze, P. Bernier and A. Rubio, "Elastic Properties of C and BxCyNz Composite Nanotubes," Phys. Rev. Lett. 80, 4502 - 4505 (1998).
[34] Z. Xin, Z. Jianjun and O.-Y. Zhong-can, "Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory," Phys. Rev. B 62, 13692-13696 (2000).
[35] C. F. Cornwell and L. T. Wille, "Critical strain and catalytic growth of single-walled carbon nanotubes," J. Chem. Phys. 109, 763 (1998).
[36] J. Song, H. Jiang, D.-L. Shi, X.-Q. Feng, Y. Huang, M.-F. Yu and K.-C. Hwang, "Stone–Wales transformation: Precursor of fracture in carbon nanotubes " Int. J. Mech. Sci. 48, 1464–1470 (2006).
[37] M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund and K. Kaski, "Mechanical properties of carbon nanotubes with vacancies and related defects," Phys. Rev. B 70, 245416 (2004).
[38] M. Meo and M. Rossi, "Tensile failure prediction of single wall carbon nanotube," Eng. Fract. Mech. 73, 2589–2599 (2006).
[39] K. Mylvaganam and L. C. Zhang, "Important issues in a molecular dynamics simulation for characterising the mechanical properties of carbon nanotubes " Carbon 42, 2025-2032 (2002).
[40] J. A. Zimmerman, C. L. Kelchner, P. A. Klein, J. C. Hamilton and S. M. Foiles, "Surface Step Effects on Nanoindentation," Phys. Rev. Lett. 87, 165507 (2001).
[41] L. Sun and R. M. Crooks, "Single Carbon Nanotube Membranes:A Well-Defined Model for Studying Mass Transport through Nanoporous Materials," J. Am. Chem. Soc. 122, 12340 -12345 (2000).
[42] C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng and M. S. Dresselhaus, "Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature " Science 286, 1127 -1129 (1999).
[43] M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean, S. R. Lustig, R. E. Richardson and N. G. Tassi, "DNA-assisted dispersion and separation of carbon nanotubes," Nat. Mater. 2, 338 - 342 (2003).
[44] D. W. Deamer and M. Akeson, "Nanopores and nucleic acids: prospects for ultrarapid sequencing " Trends Biotechnol. 18, 147-151 (2000).
[45] P. M. Ajayan and S. lijima, "Capillarity-induced filling of carbon nanotubes," Nature 361, 333 - 334 (1993).
[46] P. M. Ajayan, O. Stephan, P. Redlich and C. Colliex, "Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures," Nature 375, 564 - 567 (1995).
[47] M. KOŚMIDER, M. SOKÓŁ, Z. DENDZIK and Z. GBURSKI, "Structural and dynamic properties of water confined inside a single-walled carbon nanotube Molecular dynamics study," Mater. Sci. 23, 475 - 481 (2005).
[48] A. Alexiadis and S. Kassinos, "The density of water in carbon nanotubes " Chem. Eng. Sci. 63, 2047-2056 (2008).
[49] Y. Liu and Q. Wang, "Transport behavior of water confined in carbon nanotubes," Phys. Rev. B 72, 085420 (2005).
[50] J. Zheng, E. M. Lennon, H.-K. Tsao and Y.-J. Sheng, "Transport of a liquid water and methanol mixture through carbon nanotubes under a chemical potential gradient," J. Chem. Phys. 122, 214702 (2005).
[51] R. Wan, J. Li, H. Lu and H. Fang, "Controllable Water Channel Gating of Nanometer Dimensions," J. Am. Chem. Soc. 127, 7166 - 7170 (2005).
[52] J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics," J. Chem. Phys. 18, 817 (1950).
[53] D. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, "A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons," J. Phys. Cond. Matter 14, 783-802 (2002).
[54] J. Tersoff, "New empirical approach for the structure and energy of covalent systems," Phys. Rev. B 37, 6991 - 7000 (1988).
[55] G. C. Abell, "Empirical chemical pseudopotential theory of molecular and metallic bonding," Phys. Rev. B 31, 6184 - 6196 (1985).
[56] D. W. Brenner, "Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films," Phys. Rev. B 42, 9458 - 9471 (1990).
[57] M. P. Allen and D. J. Tildesly, Computer Simulation of Liquid, Published by oxford press Inc., N.Y (1987).
[58] A. Wallqvist and O. Teleman, "Properties of flexible water models " Mol. Phys. 74, 515 - 533 (1991).
[59] T. I. Mizan, P. E. Savage and R. M. Ziff, "Comparison of rigid and flexible simple point charge water models at supercritical conditions " J. Comput. Chem 17, 1757-1770 (1996).
[60] M. Levitt, M. Hirshberg, R. Sharon, K. E. Laidig and V. Daggett, "Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution," J. Phys. Chem. B 101, 5051 - 5061 (1997).
[61] J. E. Lennard-Jones, "Cohesion," Proc. Phys. Soc. 43, 461-482 (1931).
[62] T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu and P. Koumoutsakos, "On the Water-Carbon Interaction for Use in Molecular Dynamics Simulations of Graphite and Carbon Nanotubes," J. Phys. Chem. B 107, 1345-1352 (2003).
[63] M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, I. W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wio′rkiewicz-Kuczera, D. Yin and M. Karplus, "All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins," J. Phys. Chem. B 102, 3586 - 3616 (1998).
[64] O. Teleman, B. Jnsson and S. Engstrm, "A molecular dynamics simulation of a water model with intramolecular degrees of freedom " Mol. Phys. 60, 193 - 203 (1987).
[65] A. R. Leach, Molecular Modelling: Principles and Applications, Longman (1996).
[66] J. M. Haile, Molecular Dynamics Simulation, John Wiley & Sons,New York (1992).
[67] D. C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge University Press, London (1997).
[68] J. M. Goodfellow, Molecular Dynamics CRC Press, Boston (1990).
[69] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Oxford Science, London (1991).
[70] D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego (1996).
[71] D. W. Heermann, Computer Simulation Method, Springer-Verlag, Berlin (1990).
[72] S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," J. Chem. Phys. 81, 511 (1984).
[73] W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Phys. Rev. A 31, 1695 - 1697 (1985).
[74] N. Chandra, S. Namilae and C. Shet, "Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects," Phys. Rev. B 69, 094101 (2004).
[75] N. Tokita, M. Hirabayashi, C. Azuma and T. Dotera, "Voronoi space division of a polymer: Topological effects, free volume, and surface end segregation," J. Chem. Phys. 120, 496 (2004).
[76] D. Srolovitz, K. Maeda, V. Vitek and T. Egami, "Structural defects in amorphous solids Statistical analysis of a computer model," Philos. Mag. A 44, 847 - 866 (1981).
[77] N. Miyazaki and Y. Shiozaki, JSME Int J., Ser. A 39, 606 (1996).
[78] L. H. V. Vlack, Elements of Materials Science and Engineering (1980).
[79] C. L. Kelchner, S. J. Plimpton and J. C. Hamilton, "Dislocation nucleation and defect structure during surface indentation," Phys. Rev. B 58, 11085 -11088 (1998).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.147.104.248
論文開放下載的時間是 校外不公開

Your IP address is 3.147.104.248
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code