Responsive image
博碩士論文 etd-0903108-233523 詳細資訊
Title page for etd-0903108-233523
論文名稱
Title
三通鎂管溫間液壓成型性之研究
Study on formability of three-way magnesium tubes by warm hydroforming
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-15
繳交日期
Date of Submission
2008-09-03
關鍵字
Keywords
溫間液壓管件成形、鎂合金AZ61、有限元素模擬
Warm tube hydro-forming, Magnesium alloy AZ61, Finite element simulation
統計
Statistics
本論文已被瀏覽 5671 次,被下載 10
The thesis/dissertation has been browsed 5671 times, has been downloaded 10 times.
中文摘要
鎂合金管材在溫間加工時擁有較好的成形性。本研究以有限元素軟體DEFORM 3D模擬鎂合金AZ61管材於150℃及250℃下T型液壓鼓脹之成形結果並進行鼓脹成形實驗。經由負載路徑之修正,獲得較均一之管件厚度分佈及支管高度為49MM之產品。並將解析值與實驗值作比較,驗證了解析模式之適用性。另外針對y型鼓脹成形,探討入模半徑對於管材成形性之影響。從模擬結果可知右側入模半徑r1=10mm,左側入模半徑r2=30mm有利於管件成形。
Abstract
Magnesium alloy tubes have good formability at elevated temperatures. In this study, a finite element code DEFORM 3D is used to simulate the result of T-shape hydroforming at working temperatures 150℃ and 250℃ with magnesium alloy AZ61 tubes and then conducts the hydroforming experiments. By modifying the loading paths, products with uniform thickness and branch height are obtained 49mm. The results of simulation are compared with the experimental results to verify the validity of this modeling. On the other hand, the effects of the die fillet radius on tube formability during y-shape hydroforming are discussed. With the right die fillet radius r1=10mm and the left die fillet radius r2=30mm, a better formability of the tube is obtained.
目次 Table of Contents
中文摘要..................................................................................I
英文摘要.................................................................................II
目錄........................................................................................III
表目錄.....................................................................................V
圖目錄....................................................................................VI
符號說明................................................................................XI
第一章 序論............................................................................1
1-1 前言............................................................................1
1-2 管材溫間液壓成形製程之簡介............................... 3
1-3 文獻回顧....................................................................7
1-3-1 常溫液壓成形之文獻探討...................................7
1-3-2 溫間液壓成形之文獻探討...................................8
1-4 研究動機與論文架構..............................................10
第二章 有限元素法與模擬軟體Deform之介紹................15
2-1 前言..........................................................................15
2-2 有限元素法之基本理論..........................................16
2-3 塑性成形之FEM力學分析......................................17
2-4 模擬軟體Deform 3D之功能簡介..........................20
第三章 管件溫間液壓成形之模擬分析.............................26
3-1 前言..........................................................................26
3-2 T型三通管件之模擬................................................27
3-2-1 幾何模擬建立....................................................27
3-2-2 成形負載設定....................................................27
3-2-3 接觸面之摩擦係數設定....................................28
3-2-4 管件網格與分析................................................29
3-3 y型三通管件之模擬參數設定.................................31
第四章 模擬與實驗結果之討論.........................................43
4-1 溫間液壓成形試驗機...............................................43
4-1-1 軸向進給速度測試............................................43
4-1-2 內壓力增壓測試................................................44
4-2 T型管件模擬與實驗之比較......... ...........................44
4-2-1 150℃鎂合金T型三通管模擬與實驗結果之比
較.......................................................................44
4-2-2 250℃鎂合金T型三通管模擬與實驗結果之比
較.......................................................................46
4-3 y型管件模擬結果.....................................................51
第五章 結論........................................................................86
5-1 研究成果總結...........................................................86
5-2 未來展望...................................................................87
參考文獻..............................................................................89
附錄A y型模具設計圖........................................................95
參考文獻 References
[1]邱先拿,“管材液壓成形技術之應用狀況與發展動向,”機械月刊, Vol. 26, No. 10, pp. 369 (2000)。
[2]M. Koc, “Development of guidelines for part, process and tooling design in the tube hydroforming (THF) process”, Doctoral dissertation, The Ohio State University, Columbus, OH (1999)。
[3]M. Koc and T. Altan, “An overall review of the tube hydroforming (THF) technology”, Joural of Materials Processing Technology, Vol. 108, pp.384-393 (2001)。
[4]S. H. Zhang, “Developments in hydroforming”, Journal of Materials Processing Technology, Vol.91, pp.236-244 (1999)。
[5]H. Takuda, T. Morishita, T. Kinoshita, N.Shirakawa, “Modelling of formula for flow stress of a magnesium alloy AZ31 sheet at elevated temperatures”, Journal of Materials Processing Technology, Vol.164-165, pp.1258-1262 (2005)。
[6]N. Asnafi and A. Skogsgardh, “Theoretical and experimental analysis of stroke-controlled tube hydroforming”, Journal of Material Science and Engineering, A.279, p.95-110 (2000)。
[7]A.lan and A. Luo, “Magnesium: Current and Potential Automotive Applications”, JOM, Vol.54, pp.42-48 (2002)。
[8]蔡幸甫,“輕金屬產業的發展趨勢”,工業材料雜誌, 166 期,89 年 10 月,P.165-168。
[9]蔡幸甫,“鎂合金成形產業現況及發展趨勢”,工業材料雜誌, 211期,93 年 7 月,P.82-85。
[10]H. J. Kim, B. H. Jeon, H. Y. Kim, J. J. Kim, “Finite element analysis of the liquid bulge forming processes”, Advanced technology of plasticity, pp.545-550(1993)。
[11]M. Koc, T. Allen, S. Jiratherant, T. Altan, “The tube of FEA and design of experiments to establish design guidelines for simple hydroformed parts”, International Journal of Machine Tools & Manufacture Vol.40, pp.2249(2000)。
[12]B.J. Mac Donald and M.S.J. Hashmi, “Finite element simulation of
bulge forming of across-joint from a tubular blank”, Journal of Materials Processing Technology 103, pp.333-342 (2000)。
[13]B.J. Mac Donald and M.S.J. Hashmi, “Three-dimensional finite element simulation of bulge forming using a solid bulging medium”, Finite Elements in Analysis and Design 37, pp.107-116 (2001)。
[14]N. Jain, J. Wang and R. Alexander, “Finite element analysis of dual hydroforming processes”, Journal of Materials Processing Technology 145, pp.59-65 (2004)。
[15]L.P. Lei, D.H. Kima, S.J. Kangb, S.M. Hwanga and B.S. Kang, “Analysis and design of hydroforming processes by the rigid–plastic finite element method”, Journal of Materials Processing Technology 114, pp. 201-206 (2001)。
[16]F.K. Chen, J.K. Ciou Huang, “Mechanical properties of tubes and pre-form design in the tube-hydroforming process”, Tube Hydroforming Technology, pp.202-210 (2007)。
[17]李明富、莊志宇、黃建成、鄭炳國, “管件液壓成形技術之應用與開發”, 鍛造,第十四卷第三期,2005年十月。
[18]范光堯, 蘇嵐, “T 形管液壓成形之有限元素分析”, 中國機械工程學會第十七屆全國學術研討會, pp.103-107 (2000)。
[19]Y.M. Hwang and B.H. Chen, “Study on forming zones of loading paths during T-shape tube hydroforming processes by adaptive simulations”, Tube Hydroforming Technology, pp.109-114 (2007)。
[20]S. Novotny and M. Geiger, “Process design for hydroforming of lightweight metal sheets at elevated temperatures”, Journal of Materials Processing Technology, Vol.138, pp.594-599 (2003)。
[21]E. Doege and K. Droder, “Sheet metal forming of magnesium wrought alloys-formability and process technology”, Journal of Materials Processing Technology, Vol.115,pp.14-19 (2001)。
[22]M. Keigler, H. Bauer, D. Harrison, A. K. M. De Silva, “Enhancing the formability of aluminium components via temperature controlled hydroforming”, Journal of Materials Processing Technology, Vol.167, pp.363-370 (2005)。
[23]T. Uchiyama, M. Takaya, H. Naoi, F. Ikata, Y. Kuwahara, “Investigation of Hot Bulge Forming for Magnesium Alloy’s Tees of Pipe Joints”, The Proceedings of the 56th Japanese Joint Conference for the Technology of Plasticity, pp.129-130 (2005)。
[24]S. Yuan, J. Qi, Z. He, “An experimental investigation into the formability of hydroforming 5A02 Al-tubes at elevated temperature”, Journal of Materials Processing Technology, Vol. 177, pp.680-683 (2006)。
[25]A. Okamoto, H. Naoi, Y. Kuwahara, “Study on hot bulge forming tees of magnesium alloy pipe joint”, Tube Hydroforming Technology, pp.121-128 (2007)。
[26]Y.S. Lee, M.C. Kim, S.W. Kim, Y.N. Kwon, S.W. Choi, J.H. Lee, “Experimental and analytical studies for forming limit of AZ31 alloy on warm sheet metal forming”, Journal of Materials Processing Technology, pp.103-107 (2007)。
[27]R. Neugebauer, A. Sterzing, P. Kurka, M.Seifert, “The potential and application limits of temperature-supported hydroforming of magnesium alloys”, Advanced technology of plasticity 8th ICTP, PP.293-298(2005)。
[28]H. Palaniswamy, G. Ngaile, T. Altan, “Finite element simulation of magnesium alloy sheet forming at elevated temperatures”, Journal of Materials Processing Technology, pp.52-60 (2004)。
[29]桑原利彥、高田健太郎 , "AZ31 マグネシウム合金円管の高温塑性変形特性の研究", 第58回塑性加工連合講演會講演論文集,pp.249-250 (2007)。
[30]陳秉鍵,“三軸式溫間液壓成形試驗機之設計與鎂管成形實驗”,國立中山大學機電所碩士論文(2007)。
[31]李榮顯,“塑性加工學”,三民圖書 (1986)。
[32]G.W. Rowe, “Principles of Industrial Metalworking Processes”, Edward Arnold(Publishers), Ltd., London (1977)。
[33]S. Kobayashi, S.I. Oh, T. Altan, “Metal forming and thefinite-element method”, Oxford University Press, New York (1998)。
[34]P. Fluhrer, “DEFORM 3D Version 6.1 User Manual”, Scientific Forming Technologies Corporation, 2007。
[35]黃力上,“管件液壓成形時摩擦係數量測之研究”,中山大學機電所碩士論文(2004)。
[36]B.J. Kim, C.J. Van Tyne, M.Y. Lee, Y.H. Moon, “Finite element analysis and experimental confirmation of warm hydroforming process for aluminum alloy”, Journal of Materials Processing Technology, Vol.187-188, pp.296-299 (2007)。
[37http://henkelconsumerinfo.com/products/henkel.datasheets.Search.pdf?BUSAREA=0006&DOCTYPE=MSDS&LANG=EN&COUNTRY=CA&MATNR=235005&VKORG=3400。
[38]U. Lorenz, M. Aust, M. Ahmetoglu, T. Altan, “Evalution of friction in tube hydroforming-review of existing methods and tools design”, THF/ERC/NSM-98-R-07(1998)。
[39]陳信吉、張主聖,“Marc有限元素實例分析”,全華圖書(2006)。
[40]S. Jirathearanat, C. Hartl, T. Altan, “Hydroforming of Y-shapes-product and process design using FEA simulation and experiments”, Journal of Materials Processing Technology, Vol.146, pp.124-129 (2004)。
[41]程東明、苑世劍、安學良,“內壓對Y型三通管內高壓成形影響研究”,塑性工程學報,第13卷第2期,pp.9-13,2006年4月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.145.8.42
論文開放下載的時間是 校外不公開

Your IP address is 3.145.8.42
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code