Responsive image
博碩士論文 etd-0903108-234817 詳細資訊
Title page for etd-0903108-234817
論文名稱
Title
高速變負載下滾子鏈條應力分佈及疲勞分析
Stress and Fatigue Analysis of Roller Chain under Varied Loading
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
76
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-24
繳交日期
Date of Submission
2008-09-03
關鍵字
Keywords
容許接觸應力、滾子鏈條、變負載、橢圓方程準則
roller chain, AGMA allowable contact stress criteria, ASME elliptic equation, gear-cam intermittent mechanism, varied loading
統計
Statistics
本論文已被瀏覽 5717 次,被下載 0
The thesis/dissertation has been browsed 5717 times, has been downloaded 0 times.
中文摘要
本研究主要探討滾子鏈條於不同轉速下變負載運作之應力分佈影響,並分析其疲勞壽命。
文中首先將經由數值分析所得之齒凸輪間歇系統動態響應,轉換為模型邊界條件,搭配MARC有限元素套裝軟體模擬鏈條運作之行為,藉此觀察滾子鏈條於變負載下之應力分佈情形,配合美國機械工程協會(ASME)橢圓方程準則與美國齒輪製造協會(AGMA)容許接觸應力規範計算出滾子鏈條於各轉速下之安全係數。
結果顯示,von Mises 應力最大值將出現在梢與薄板接觸面上,並根據疲勞分析得知,滾子鏈條於此變負載下,薄板部分將先行發生疲勞破壞。
Abstract
The stress and fatigue analysis of roller chain under varied loading is investigated in this study.
With the dynamic responses of a gear-cam intermittent mechanism, boundary conditions are set up to the finite element model. The commercial MARC finite element method package is used in this work. Stress distribution is our concern. ASME elliptic equation and AGMA allowable contact stress criteria are employed in the fatigue analysis.
Results indicate that the maximum of von Mises stress occurs on the contact surface between pins and plates. Besides, the initial failures on this loading are predicted to happen on the plates according to the fatigue analysis.
目次 Table of Contents
目錄 iv
圖目錄 vi
表目錄 vvi
符號說明 ix
摘要 xii
Abstract xiii
第一章 緒論 1
1-1 前言 1
1-1-1簡介 1
1-1-2研究動機與方法 2
1-2 文獻回顧 2
1-3 組織與章節 4
第二章 有限元素模型之建立 9
2-1 MARC與Mentat程式介紹 9
2-1-1 MARC套裝軟體之組織架構 9
2-1-2 MARC資料庫之結構 10
2-2 有限元素模型 10
2-2-1 問題描述 11
2-2-2 分析方法 11
2-2-3 相關理論說明 11
2-2-4 有限元素模型 13
2-3 基本模型 14
2-3-1尺寸 14
2-3-2收斂性分析 14
第三章 結果分析與參數設計 28
3-1滾子鏈條應力分析 28
3-2滾子鏈條疲勞分析 28
3-2-1 ASME橢圓方程 28
3-2-2 AGMA容許接觸應力 30
第四章 結論 55
附錄 A. 凸輪運動曲線 56
附錄 B. 高速軋盒機系統模式 58
參考文獻 61

圖目錄
圖1-1 自動化軋盒機(順盈機械公司之SBL-820SE軋盒機) 5
圖1-2 內部構造圖 6
圖1-3 滾子鏈條示意圖 7
圖1-4 鏈條各部位之結構示意圖 8
圖2-1 MARC系統分析流程圖 15
圖2-2滾子鏈條模型圖 16
圖2-3鏈條機構示意圖 17
圖2-4轉速100 rpm等效飛輪角加速度 18
圖2-5轉速150 rpm等效飛輪角加速度 19
圖2-6轉速200 rpm等效飛輪角加速度 20
圖2-7轉速100 rpm鏈輪施予鏈條之負載 21
圖2-8轉速150 rpm鏈輪施予鏈條之負載 22
圖2-9轉速200 rpm鏈輪施予鏈條之負載 23
圖2-10滾子鏈條有限元素模型圖 24
圖2-11邊界條件示意圖 25
圖2-12滾子鏈條尺寸模型圖 26
圖2-13有限元素之收斂性分析 27
圖3-1有限元素模型示意圖 32
圖3-2外薄板、內薄板及梢之有限元素模型示意圖 33
圖3-3外薄板有限元素模型示意圖 34
圖3-4內薄板有限元素模型示意圖 35
圖3-5梢有限元素模型示意圖 36
圖3-6點O於不同轉速下之von Mises 應力分佈圖 37
圖3-7點I於不同轉速下之von Mises 應力分佈圖 38
圖3-8點PO於不同轉速下之von Mises 應力分佈圖 39
圖3-9點PI於不同轉速下之von Mises 應力分佈圖 40
圖3-10點O於不同轉速下之最大主應力分佈圖 41
圖3-11點I於不同轉速下之最大主應力分佈圖 42
圖3-12點PO於不同轉速下之最大主應力分佈圖 43
圖3-13點PI於不同轉速下之最大主應力分佈圖 44
圖3-14點O之最大主應力分佈圖 45
圖3-15點I之最大主應力分佈圖 46
圖3-16點PO之最大主應力分佈圖 47
圖3-17點PI之最大主應力分佈圖 48

表目錄

Table 3-1 ASME下各點之Sa ,Sm 49
Table 3-2 鏈輪轉速100rpm下各點之ASME疲勞安全係數 50
Table 3-3鏈輪轉速150rpm下各點之ASME疲勞安全係數 51
Table 3-4鏈輪轉速200rpm下各點之ASME疲勞安全係數 52
Table 3-5不同轉速下各點之ASME疲勞安全係數 53
Table 3-6不同轉速下點O與點PO之AGMA接觸應力值 54
參考文獻 References
參考文獻
[1] Riopelle E. F., and Bremer N. C., “Power Transmission Chain Drive,” Patent No. 2,725,755, United States Patent, Dec. 1955.
[2] Terepin R. H., “Power Transmission Chain,” United States Patent, Patent No. 3,213,699, Oct. 1965.
[3] Rothbart H. A., “Power-transmission Chains,” Mechanical Design and System Handbook, 1968.
[4] Faulkner L. L. and Menkes S. B. edit, Chains for Power Transmission and Material Handling, Marcel sekker Inc., 1982.
[5] The American Society of Mechanical Engineers, “Precision Power Transmission Roller Chains, Attachments, and Sprockets,” ASME B29.1M, 1993.
[6] Makoto Kanehira edit, The Complete Guide to Chain, U.S. Tsubaki Inc., 1995.
[7] Shigley J. and Mischke C. edit, Standard Handbook of Machine Design 2nd Edition, McGraw-Hill, Ch 32, pp.1-32, 1996.
[8] Kim M. S., and Johnson G. E., “A General Multi-body Dynamic Model to Predict the Behavior of Roller Chain Drives at Moderate and High Speeds,” Engineering, College of – Technical Reports, 1992.
[9] Conwell J. C. and Johnson G. E., “Experimental Investigation of Link Tension and Roller-Sprocket Impact in Roller Chain Drives,” Mechanism and Machine Theory, vol. 31, No. 4, pp.533-544, 1995.
[10] Low K. H., “Computer-Aided Selection of Roller Chain Drives,” Computers & Structures, vol. 55, No. 5, pp.925-936, 1995.
[11] Fritz P., and Pfeiffer F., “Dynamics of High Speed Roller Chain Drives,” ICIAM/GAMM 95. Part V, Hamburg, ALLEMAGNE, vol. 76, pp. 151-152, 1996.
[12] Conwell J. C. and Johnson G. E., “Design, Construction and Instrumentation of a Machine to Measure Tension and Impact Forces in Roller Chain Drives,” Mechanism and Machine Theory, vol. 31, pp.525-531, Issue 4, May 1996.
[13] Liu S. P., Wang K. W., Hayek S. I. and Trethewey M. W., “A Global–Local Integrated Study of Roller Chain Meshing Dynamics,” Journal of Sound and Vibration, vol. 203, Issue: 1, pp.41-62, 1997.
[14] Borsari R., and Dunge F., “Functional Design and Kinematic Synthesis of a Chain Driven High-Speed Packaging Machine,” European ADAMS Users’ Conference Technical Papers, 2000.
[15] Spicer J. B., Richardson Christopher J. K., Ehrlich Michael J., Bernstein Johanna R., Fukuda Masahiko, and Terada Masao, “Effects of Frictional Loss on Bicycle Chain Drive Efficiency,” Journal of Mechanical Design, vol. 123, pp. 598-605, 2001.
[16] Zheng H., Wang Y. Y., Liu G. R., and Lam K. Y., “Efficient Modeling and Prediction of Meshing Noise from Chain Drives,” Journal of Sound and Vibration, vol. 245, Issue: 1, August 2, pp.133-150, 2001.
[17] Mihai, “Models of Non-Linear Dynamic Behaviour of Chains Transmission under Variable Technological Loads,” International Journal for Manufacturing Science and Technology, vol. 4, No. 2, 2002.
[18] Pedersen S. L., “Contact Problems in Roller Chain Drive System,” ICTAM, August 2004.
[19] Pedersen S. L., “Model of Contact between Rollers and Sprockets in Chain-Drive Systems,” Archive of Applied Mechanics, vol. 74, pp.489-508, Springer-Verlag, 2005.
[20] Renold plc, http://www.renold.com/
[21] KMC chain industrial Co., Ltd, http://www.kmcchain.com/
[22] Tien Yuen machinery Mfg. Co., Ltd, http://www.tycchain.com.tw/
[23] Yung Tong Co., Ltd, http://yungtong.eyp.com.tw/
[24] Chien Hsiang Transmission Industry Co., Ltd, http://www.chc-transmission.com.tw/
[25] Laz P. J., and Hillberry B. M., “Fatigue Life Prediction from Initiated Inclusion in Cracks,” International Journal of Fatigue, vol. 20, No. 4, 1998.
[26] Zhao Y. X., “A Methodology for Strain-Based Fatigue Reliability Analysis,” Reliability Engineering and System Safety, vol. 70, No. 2, 2000.
[27] Zheng X., “On Some Basic Problems of Fatigue Research in Engineering,” International Journal of Fatigue, vol. 23, No. 9, 2001.
[28] Collins J. A. edit, Failure of Materials in Mechanical Design, John Wiley and Sons, Inc., 1980.
[29] Joseph E. S., Charles R. M. edit, and Richard G. B., Mechanical Egineering Design, McGraw-Hill Companies, Inc., 2004.
[30] American National Standard, “Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth,” ANSI/AGMA 2001-C95, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.140.198.43
論文開放下載的時間是 校外不公開

Your IP address is 3.140.198.43
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code