Responsive image
博碩士論文 etd-0903110-130243 詳細資訊
Title page for etd-0903110-130243
論文名稱
Title
雷射熱破裂技術於切割脆性材料之模擬分析
The Thermal Fracture Technique on Laser Cutting of Brittle Materials
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
152
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-29
繳交日期
Date of Submission
2010-09-03
關鍵字
Keywords
脆性材料、熱破裂、雷射切割
laser cutting, thermal fracture, brittle material
統計
Statistics
本論文已被瀏覽 5754 次,被下載 4541
The thesis/dissertation has been browsed 5754 times, has been downloaded 4541 times.
中文摘要
本論文目的乃以有限元素法模擬雷射熱破裂技術於切割脆性材料之熱應力分佈與變化,並以破壞力學的觀點,分析材料因雷射熱應力導致裂緣應力強度因子值局部上升,並探討材料中裂縫得以擴展之機制與參數影響。文中主要以玻璃基板切割為對象,分析雷射熱源、板材性質與冷卻源中的八項製程參數,對切割潛力、裂縫擴展時間以及裂縫落後熱源中心距離之影響。
雷射熱破裂技術在脆性材料加工中,由於其高加工品質及低設備需求之優點,近年已逐漸取代傳機械切割與雷射燒蝕技術。在模擬雷射切割的過程中,文中分別採用五個不同裂縫長度之有限元素模型,模擬裂縫擴展至不同長度加工過程時,其材料溫度場分佈與應力場狀態;並藉由虛擬裂紋閉合法和裂緣位移外插法,計算此刻裂縫前緣之應變能釋放率和應力強度因子,檢視該裂縫擴展情形或確保該裂縫能夠繼續延伸。分析結果顯示,縮減材料厚度、使用液體輔助冷卻與增加雷射熱源對材料表面之熱通量,均能提高成功切割材料之機會。且減少冷熱源間的相對距離,可有效縮短裂縫落後熱源之情形。數值結果,有限元素法確可有效應用於雷射熱破裂技術之分析與製程建立。
Abstract
The finite element method has employed to simulate the laser thermal cracking process for brittle materials. The varieties of temperature and thermal stress distributions around the crack tip were studied. The effect of cracking parameters, i.e. laser power, focus moving speed, plate thickness, crack length, cooling effect… etc., on the crack propagation has also investigated.
The stress intensity factor around crack tip is considered as the key parameter to dominate the crack propagation. The thermal-plastic-elastic finite element model was employed to simulate the temperature and stress distributions. The strain energy release rate and stress intensity factor solved from virtual crack closure technique and displacement extrapolation method are employed to illustrate the crack state in this study. Five crack length models were used to show the stress intensity factor variations around the crack tip. Numerical results indicate that the head flux on the surface, substrate thickness and adopting cooling sources may affect the crack propagation, crack delay significantly. The results in this study also demonstrate the feasibility of employing finite element method in the exploring crack propagation mechanism in laser thermal cracking process.
目次 Table of Contents
目錄 i
表目錄 iv
圖目錄 v
符號說明 x
摘要 xiv
Abstract xv
第一章 緒論 1
1.1 前言 1
1.2 發展背景與文獻回顧 4
1.3 研究動機 9
1.4 組織章節 11
第二章 相關理論與方法 13
2.1 陶瓷材料基本特性與熱破裂切割機制 13
2.2 基礎破壞力學 16
2.3 有限元素處理裂縫問題 24
2.3.1 前言 24
2.3.2 裂緣位移外插法 28
2.3.3 虛擬裂紋閉合法 30
2.4 熱傳模式 36
2.5 力學模式 37
第三章 有限元素模型與分析方法 39
3.1 概述 39
3.2 研究步驟 40
3.3 建模方法與假設 42
3.3.1 材料性質與模型幾何 42
3.3.2 網格切割與接觸設定 44
3.3.3 初始條件與邊界條件 52
3.4 分析模式與模型驗證 57
3.4.1 離散化裂縫擴展問題 57
3.4.2 模擬過程之運算設定 60
3.4.3 有限元素模型之可靠度測試 64
3.5 參數規劃 71
第四章 數值結果與討論 75
4.1 初始製程參數下之模擬結果與熱破壞機制 75
4.2 雷射熱源之參數分析 99
4.3 板材之參數分析 107
4.4 冷卻源之參數分析 113
4.5 多熱源配置 122
第五章 結論 127
5.1 本文成果 127
5.2 未來展望 128
參考文獻 129
參考文獻 References
[1] Nisar, S., Sheikh, M. A., Li, L., and Safdar, S., "The Effect of Material Thickness, Laser Power and Cutting Speed on Cut Path Deviation in High-Power Diode Laser Chip-Free Cutting of Glass," Optics and Laser Technology, 42, pp. 1022-1031, 2010.
[2] Stute, U., Glasstec, and Düsseldorf, "EU-Project: Matra - Machining of Transparent Materials by Multiple Absorption - Contents and Results," Laser Zentrum Hannover e.V., 2004.
[3] Kruusing, A., "Underwater and Water-Assisted Laser Processing Part 1—General Features, Steam Cleaning and Shock Processing," Optics and Lasers in Engineering, 41, pp. 307-327, 2004.
[4] Kruusing, A., "Underwater and Water-Assisted Laser Processing Part 2—Etching, Cutting and Rarely Used Methods," Optics and Lasers in Engineering, 41, pp. 329-352, 2004.
[5] Lumley, R. M., "Controlled Separation of Brittle Materials Using a Laser," The Bulletin of the American Ceramic Society, 48(9), pp. 850-854, 1969.
[6] Akiyama, S. and Amada, S., "Estimation of Fracture Conditions of Ceramics by Thermal Shock with Laser Beams Based on the Maximum Compressive Stress Criterion," JSME International Journal, 35(1), pp. 91-94, 1992.
[7] Li, K. and Sheng, P., "Plane Stress Model for Fracture of Ceramics During Laser Cutting," International Journal of Machine Tools and Manufacture, 35(11), pp. 14, 1995.
[8] Ikeda, M., Shibata, T., Makino, E., Takahashi, Y., Ono, A., and Matsumoto, F., "Study on Laser Breaking of Glass Plate (1st Report) - Generation and Growth of Vertical Cracks by Scribing," The Japan Society for Precision Engineering, 62(3), pp. 413-417, 1996.
[9] Kurobe, T., Noguchi, M., and Matsumoto, T., "Precision Breaking of a Silicon Wafer by YAG Laser - Double Irradiation Breaking Assisted by Mirror Surface Cooling," The Japan Society for Precision Engineering, 62(1), pp. 95-99, 1996.
[10] Black, I. and Chua, K. L., "Laser Cutting of Thick Ceramic Tile," Optics and Laser Technology, 29(4), pp. 193-205, 1997.
[11] Pompe, W., Bahr, H. A., Pflugbeil, I., Kirchhoff, G., Langmeier, P., and Weiss, H. J., "Laser Induced Creep and Fracture in Ceramics," Materials Science and Engineering, 233, pp. 167-175, 1997.
[12] Muralidhar, S., Pal, S., Jagota, A., Kale, S. R., and Mittal, R. K., "A Study of Thermal Cutting of Glass," Journal of the American Ceramic Society, 82(8), pp. 2166-2176, 1999.
[13] Saimoto, A., Imai, Y., and Motomura, F., "Simulation of Crack Growth in Thermal Stress Cleaving Using Line Heat Source," JSME International Journal, 42(4), pp. 578-584, 1999.
[14] Ikeda, M., Shibata, T., Makino, E., Takahashi, Y., and Koshida, H., "Study on Laser Breaking of Glass Plates (2nd Report) - the Optimum CO2 Laser Beam Irradiating Condition," The Japan Society for Precision Engineering, 66(2), pp. 213-217, 2000.
[15] Hermanns, C., "Laser Cutting of Glass," Proceedings of SPIE, 4102, pp. 219-226, 2000.
[16] Prakash, E. S., Sadashivappa, K., Joseph, V., and Singaperumal, M., "Nonconventional Cutting of Plate Glass Using Hot Air Jet: Experimental Studies," Mechatronics, 11, pp. 595-615, 2001.
[17] Tsai, C. H. and Liou, C. S., "Applying an on-Line Crack Detection Technique for Laser Cutting by Controlled Fracture," International Journal of Advanced Manufacturing Technology, 18, pp. 724-730, 2001.
[18] Ueda, T., Yamada, K., Oiso, K., and Hosokawa, A., "Thermal Stress Cleaving of Brittle Materials by Laser Beam," CIRP Annals - Manufacturing Technology, 51(1), pp. 149-152, 2002.
[19] Tsai, C. H. and Chen, H. W., "Laser Cutting of Thick Ceramic Substrates by Controlled Fracture Technique," Journal of Materials Processing Technology, 136, pp. 166-173, 2003.
[20] Tsai, C. H. and Liou, C. S., "Fracture Mechanism of Laser Cutting with Controlled Fracture," Journal of Manufacturing Science and Engineering, 125, pp. 519-528, 2003.
[21] Elperin, T. and Rudin, G., "Controlled Fracture of Nonmetallic Thin Wafers Using a Laser Thermal Shock Method," Journal of Electronic Packaging, 126, pp. 142-147, 2004.
[22] Tsai, C. H. and Lin, B. C., "Laser Cutting with Controlled Fracture and Pre-Bending Applied to LCD Glass Separation," International Journal of Advanced Manufacturing Technology, 32, pp. 1155-1162, 2007.
[23] Wang, Y. Z. and Lin, J., "Characterization of the Laser Cleaving on Glass Sheets with a Line-Shape Laser Beam," Optics and Laser Technology, 39, pp. 892-899, 2007.
[24] Kuo, Y. L. and Lin, J., "Laser Cleaving on Glass Sheets with Multiple Laser Beams," Optics and Lasers in Engineering, 46, pp. 388-395, 2008.
[25] Tsai, C. H. and Huang, B. W., "Diamond Scribing and Laser Breaking for LCD Glass Substrates," Journal of Materials Processing Technology, 198, pp. 350-358, 2008.
[26] Jiao, J. and Wang, X., "Numerical Investigation on Machining Glass with CO2 Lasers," Frontiers of Optoelectronics in China, 2(3), pp. 334-338, 2009.
[27] Nisar, S., Sheikh, M. A., Li, L., Pinkerton, A. J., and Safdar, S., "The Effect of Laser Beam Geometry on Cut Path Deviation in Diode Laser Chip-Free Cutting of Glass," Journal of Manufacturing Science and Engineering, 132, 2010.
[28] Ugural, A. C., Mechanical Design: An Integrated Approach, McGraw-Hill, New York, 2003.
[29] Callister, W. D., Materials Science and Engineering: An Introduction, John Wiley & Sons, United States of America, 2003.
[30] Gdoutos, E. E., Fracture Mechanics: An Introduction, Springer Netherlands, Netherlands, 2005.
[31] Rosler and Joachim, Mechanical Behaviour of Engineering Materials, Springer Berlin Heidelberg, Berlin, 2007.
[32] 莊東漢,材料破損分析,五南圖書,臺北,2007。
[33] Laham, S. A., "Stress Intensity Factor and Limit Load Handbook," Technical Report No. EPD/GEN/REP/0316/98, British Energy Generation, United Kingdom, 1999.
[34] Tada, H., Paris, P. C., and Irwin, G. R., The Stress Analysis of Cracks Handbook, American Society of Mechanical Engineers, United States of America, 2000.
[35] Shih, C. F., Delorenzi, H. G., and German, M. D., "Crack Extension Modeling with Singular Quadratic Isoparametric Elements," International Journal of Fracture, 12, pp. 647-651, 1976.
[36] 陳立生,「裂縫位移外插法用於應力強度因子值估測」,博士論文,國立中山大學機械工程研究所,高雄,1993。
[37] Krueger, R., "The Virtual Crack Closure Technique: History, Approach and Applications," Technical Report No. NASA/CR-2002-211628, NASA Langley Research Center, Hampton, Virginia, 2002.
[38] Cengel, Y. A., Heat and Mass Transfer: A Practical Approach, McGraw-Hill, New York, 2006.
[39] Ono, T. and Tanaka, K., "Cuttability of AMLCD Glass Substrates Using a Four-Point-Bending Test," Technical Report No. TIP304, Corning Technical Information Paper, 2004.
[40] Msc, Marc Volume B: Element Library, MSC.Software Corporation.
[41] Steen, W. M., Laser Material Processing, Springer-Verlag, New York, 2003.
[42] Kou, S., Welding Metallurgy, John Wiley & Sons, Canada, 1987.
[43] Hou, Z. B. and Komanduri, R., "General Solutions for Stationary/Moving Plane Heat Source Problems in Manufacturing and Tribology," International Journal of Heat and Mass Transfer, 43, pp. 1679-1698, 2000.
[44] Ion, J. C., Laser Processing of Engineering Materials, Elsevier Ltd., United Kingdom, 2005.
[45] 許晉睿、黃石柱、張國樑、黃國政、吳文弘與鄭源傑,「固態雷射玻璃切割技術研究」,中國機械工程學會,中壢,2007。
[46] 陳勇全,「裂緣塑性能與彈塑材料裂縫起始之探討」,博士論文,國立中山大學機械工程研究所,高雄,1996。
[47] 藤井太一,複合材料的破壞與力學,五南圖書,臺北,2006。
[48] 陳信吉,Marc有限元素實例分析,全華科技圖書,臺北,2006。
[49] Wang, Y. and Lin, Z., "3-D Simulation and Stress Intensity Factors Calculation of Surface Crack," China Offshore Platform, 21(3), pp. 23-26, 2006.
[50] Krueger, R. and Goetze, D., "Influence of Finite Element Software on Energy Release Rates Computed Using the Virtual Crack Closure Technique," Technical Report No. NASA/CR-2006-214523, NASA Langley Research Center, Hampton, Virginia, 2006.
[51] Patrício, M. and Mattheij, R., "Crack Propagation Analysis," Technical Report No. CASA-07-03, Eindhoven University of Technology, 2007.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code