Responsive image
博碩士論文 etd-0903110-132432 詳細資訊
Title page for etd-0903110-132432
論文名稱
Title
泛函疊代微分方程之理論及計算
Theory and Calculation of Iterative Functional Differential Equation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
166
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-23
繳交日期
Date of Submission
2010-09-03
關鍵字
Keywords
解析解、遲延微分、泰勒級數、數值解
delay, state-dependent, analytic solution
統計
Statistics
本論文已被瀏覽 5817 次,被下載 1262
The thesis/dissertation has been browsed 5817 times, has been downloaded 1262 times.
中文摘要
延遲微分方程長期被研究是由於他們的實際應用。對延遲係數不是一個恆定數字,許多學者研究這係數是一個和本身狀態有關的變數,所以我們處理未知合成函數的微分和泛函方程,即疊代微分方程和疊代泛函方程。這篇論文主要目的是研究此類微分方程,包括解析解,數值解,還有定性的性質。

首先,我們收集整理這類常見微分方程的解析解,然後古典方法,例如未定係數被用於計算一階微分方程解析解在第一章,二階是第二章,泛函方程則在第三章,泰勒級數法第四章。我們有一套系統的方法找出固定點,因此可以使用這些方法計算解析解的係數,此外,我們在第五章也建立解析解的存在唯一定理。

第二,我們收集整理已知,具有代表性的疊代微分方程和泛函方程解的存在唯一性,然後我們利用Schauder固定點定理,建立更一般性的疊代微分方程連續解的存在性,在某些條件下,局部解還可擴充到一般解。

第八章是處理最簡單的疊代微分方程 ,我們對Eder 的例子給予定性及解不唯一證明,第八章我們使用Euler方法得到疊代微分方程的數值解。在某種條件下,我們有疊代微分方程的誤差分析,第九章我們使用未定係數,泰勒級數,Picard's疊代和Si 他們的方法得到的解析解,這些方法的好處和缺點也被討論。
Abstract
Functional differential equations with delay have long been studied due to their practical applications. For the delay term is not a constant number, many researches study the case when this deviating argument depends on the state variable. So we deal with the differential and functional equations involving with the compositions of the unknown function, i.e. the iterative functional differential equations (IFDEs) and iterative functional equations (IFEs) without derivative. The main purpose of this dissertation is to investigate the solutions of such equations, including their analytic solutions, numerical solutions and qualitative behaviors.

First, we survey some well known differential equations of this type which possess analytic solutions. Then the classical method of undetermined coefficients is used to compute these power series solutions for the first order IFDEs in Chapter 1, the second order IFDEs in Chapter 2 and FDEs in Chapter 3. Taylor series method is also used to get these analytic solutions in Chapter 4. Systematical method is found to locate the fixed point in generalized sense, so we can use these methods to calculate the coefficients of their analytic solutions. Furthermore, we also establish the existence and uniqueness theorem for analytic solution in Chapter 5.

Second, we survey the known existence and uniqueness theorems of solutions for these IFDEs and FDEs in Chapter 6. Then we apply Schauder fixed point theorem to establish new existence theorems of local solutions for general IFDEs. Under certain conditions, these local solutions can be extended to global solutions.

Chapter 7 deals with the simplest IFDEs the Eder's equation. We extend the qualitative properties of this case and find its solution is not unique. In Chapter 8, we use Euler method to get the numerical solution of IFDEs. Under some conditions, we have the error analysis on these equations. In Chapter 9, we employ the method of undetermined coefficients, Taylor series, Picard's iteration and Si's methods to get their analytic solutions. Their comparisons, the advantage and disadvantage of these methods are also discussed.
目次 Table of Contents
1. Method of Undetermined Coefficients for Analytic Solutions of Iterative Functional Differential Equations of First Order . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 introduction. . . . . . . . . . . . . . . . . . . . . . . .1
1.2 The m-th iterative. . . . . . . . . . . . . . . . . .3
1.3 StepfanType . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Neutral Type . . . . . . . . . . . . . . . . . . . . . .12
1.5 Combination Type of Iterates. . . . . . . 16
1.6 Reciprocal of Iterates. . . . . . . . . . . . . . .19
1.7 General Form. . . . . . . . . . . . . . . . . . . . . 22
1.8 Conclusion. . . . . . . . . . . . . . . . . . . .. . . .24

2. Method of Undetermined Coefficients for Analytic Solutions of Iterative Functional Differential Equations of Second Order . . . . . . . . . . . . . . . . . . . . . .25
2.1 Introduction . . . .. . . . . . . . . . . . . . . . . . . 25
2.2 Square of Iterates . . . . . . . . . . . . . . . . . 27
2.3 terates with Derivatives . . . . . . . . . . . . 32
2.4 Combination of Iterates . . . . . . . . . . . 34
2.5 General Form . . . . . . . . . . . . . . . . . . . .40

3. Method of Undetermined Coefficients for Analytic Solutions of Iterative Functional Equations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . .45
3.2 Polynomial-like Type . . . . . . . . . . . . . .47
3.3 Curve Type . . . . . .. . . . . . . . . . . . . . . . 52
3.4 nvariant Curve Type . . . . . . . . . . . . . . .55
3.5 Neutral Type . . . . . . . . . .. . . . . . . . . . .57
3.6 General Type . . . . . . . . . .. . . . . . . . . . .58
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . 61

4. Taylor Series Method for Analytic Solutions of Iterative Functional Equations62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . 62
4.2 Combination of Iterates . . . . . . . . . . . 64
4.3 General Form . . . . . . . .. . . . . . . . . . . . 68
4.4 Curve Type . . . . . . . . . . . . . . . . . . . . . .71
4.5 Invariant Curve Type . . . . . . .. . . . . . . .73
4.6 Si’s Results . . . . . . . . . . . . . . . . . . ..75
4.7 Conclusion . . . . . . . . . .. . . . . . . . . . . . 78

5. Existence and Uniqueness of Undetermined Coefficients for Analytic Solutions
of Iterative Functional Differential Equations . . . . . . . . . . . . . . . . . . . . . . . . .. 79
5.1 Introduction . . . . . . . . . . . . . . .. . . . . . .79
5.2 Existence and Uniqueness . .. . . . . .80
5.3 First Order . . . . . . . . . . . . . . . . . . . . . . 85
5.4 Second Order. . . . . . . . . . . . . . . . . . . .91
5.5 Analytic Solution does not exists . .. 95
5.6 Conclusion . . . . . . . . . .. . . . . . . . . . .98

6. Existence of Solutions for Iterative Functional Differential Equations . . . . . . . . . . . . . . 100
6.1 Introduction. . . . . . . . . . . . . . . . . . . . 100
6.2 Monotonic Properties . . . . . . . . . . . 102
6.3 Existence Theorem . . . . . . . . . . . . 106
6.4 Local Solutions . . . . . . . . . . . . . . . ..114
6.5 Conclusion . . . . . . . .. . . . . . . . . . . . .116

7. Qualitative Behavior of an Iterative Functional Differential Equation . . . . . . . . . . . . . . 117
7.1 Introduction . . . . . . . . . . . . . . . . . . . .117
7.2 Eder’s Results . . . .. . . . . . . . .. . . 118
7.3 Qualitative Properties . . . . . . . . . . .121
7.4 Conclusion . . . . . . . . . . . . . . . . . . . . 124

8. Numerical Solutions of Iterative Functional Differential Equations Using Euler
Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.1 Introduction . . . . . . . . . . . . . . . . . . .125
8.2 Test Model . . . . .. . . . . . . . . . . . . . . .126
8.3 Iterative Differential Equations . . . 127
8.4 Stepfan Type . . . . . . . . . . . . . . . . . . 133
8.5 Error Analysis . . .. . . . . . . . . . . . . . .135
8.6 Conclusion. . . . . . . . . . . . . . . . .. . . 139

9. Four Symbolic Methods for the Analytic
Solutions of Iterative Functional
Differential Equations . . . . . . . . . . . . .140
9.1 introduction. . . . . . . . .. . . . . . . . . . .140
9.2 Methods of Undetermined Coefficients . . . . . . . . . . . . . . . . . . . . . 141
9.3 Picard’s Iteration . . . . . . . . . . . .142
9.4 Taylor Series Method . . . . . . . . . 143
9.5 Method of Si’s Transformation 145
9.6 Comparison. . . .. . . . . . . . . . . . . . 146

References. . . . . . . . . . . . . . . . . . . . . .150
參考文獻 References
J.K. Hale, Theory of Functional Differential Equations, Spring-Verlag, New York, 1987.
K.L. Cooke, Functional differential system: some models and perturbation problems, in: J.K. Hale and J.P. LaSalle (Eds.), International Symposium on Differential Equations and Dynamical Systems, held in puerto Rico, Academic Press, New York (1967), 167-183.
B.H. Stephan, On the existence of periodic solutions of $z^{prime }(t)=-az(t-r+kmu (t,z(t)))+F(t)$, J. Differ. Equ. 6 (1969), 408-419.
E.Eder, The functional differential equation $x^{prime }(t)=x(x(t))$, J. Differ. Equ. 54 (1984), 390-400.
S. Stanek, On global properties of solutions of functional differential equation $x^{prime }(t)=x(x(t))+x(t)$, Dynamic Sys. Appl. 4 (1995), 263-278.
W.R. Li, S.S. Cheng and T.T. Lu, Closed form solutions of iterative functional equations, Applied Mathematics E-Notes 1 (2000), 1-4.
D.K. Hsing, Existence and uniqueness theorem for the one-dimensional backwards two-body problem of electrodynamics, Phys. Rev. D. 16(4) (1977), 974-982.
W. Ke, On the equation $x^{prime }(t)=f(x(x(t)))$, Funkcialaj Ekvacioj 33 (1990), 405-425.
Y.A. Fiagbedzi and M.A. El-Gebeily, Existence and uniqueness of the solution of a class of nonlinear functional differential equations, Ann. of Diff. Eqs. 16(4) (2000), 381-390.
G.M. Dunkel, On nested functional differential equations, SIAM J. Appl. Math. 118(2) (1970), 514-525.
S.S. Cheng, J.G. Si and X.P. Wang, An existence theorem for iterative functional differential equations, Acta Math. Hung. 94(1-2) (2002), 1-17.
J.G. Si, W.R. Li and S.S. Cheng, Analytic solutions of an iterative functional differential equation, Comput. Math. Appl. 33(6) (1997), 47-51.
J.G. Si and S.S. Cheng, Analytic solutions of a functional differential equation with state dependent argument, Taiwanese Journal of Math.1(4) (1997), 471-480.
J.G. Si, X.P. Wang and S.S. Cheng, Analytic solutions of a functional differential equation with a state derivative dependent delay, Aequ. Math.57 (1999), 75-86.
J.G. Si and S.S. Cheng, Note on an iterative functional differential equation, Demonstr. Math. 31(3) (1998), 599-614.
X.P. Wang and J.G. Si, Analytic solutions of an iterative functional differential equation, J. Math. Anal. Appl. 262 (2001), 490--498.
J.G. Si and W.N. Zhang, Analytic solutions of a class of iterative functional differential equations, J. Comput. Appl. Math. 162 (2004), 467--481.
B. Xu; Z. Weinian and J.G. Si, Analytic solutions of an iterative functional differential equation which may violate the Diophantine condition, J. Difference Equ. Appl. 10 (2004), 201--211.
A. Elbert, Asymptotic behaviour of the analytic solution of the differnetial equation $y^{prime }(t)+y(qt)=0$ as $q ightarrow 1^{-}$, J. Comput. Appl. Math. 41 (1992), 5-22.
J.G. Si and H. Zhao, Local invertible analytic solutions for an iterative differential equation related to a discrete derivatives sequence, J. Math. Anal. Appl, 335(1) (2007), 428-442.
X.L. Liu, Existence of an analytic solution for a first-order iterative functional differential equation, (Chinese) J. Shandong Univ. Nat. Sci. 42(12) (2007), 82-86.
J. Liu, Analytic solutions of a first order iterative functional differential equation, Results Math. 55(1-2) (2009), 129-137.
H. Liu and F. Qiu, Analytic solutions of an iterative equation with first order derivative, Ann. Differential Equations 21(3) (2005), 337-342.
F. Qiu and H.Z. Liu, Analytic solutions of a first order iterative differential equation , Demonstratio Math. 39(1) (2006), 81-90.
L.X. Liu, Analytic solutions of an iterative functional differential equation, (Chinese) J. Shandong Univ. Nat. Sci. 43(10) (2008), 41-45.
P. Zhang, Analytic solutions of a first order functional differential equation with a state derivative dependent delay, Electron. J. Differential Equations 51 2009, 1-8.
J.G. Si and M. Ma, Local invertible analytic solution of a functional differential equation with deviating arguments depending on the state derivative, J. Math. Anal. Appl. 327(1) (2007), 723-734.
R.D. Driver, A two-body problem of classical electrodynamics: the one-dimensional case, Annals of Physics 21 (1963), 122-142.
V.R. Petahov, On a boundary value problem, Trudy Sem. Teor. Differential. Uravneniis Otklon. Argumentom Univ. Druzby Narodov Patrisa Lumumby 3QTR{bf}{ }(1965), 252-255.
J.G. Si and X.P. Wang, Analytic solutions of a second-order iterative functional differential equation, Comput. Math. App. 143QTR{bf}{ }(2002), 81-90.
J.G. Si and X.P. Wang, Analytic solutions of a second-order functional differential equation with a state dependent delay, Result. Math. 39QTR{bf}{ }(2001), 345-352.
J.G. Si and X.P. Wang, Analytic solutions of a second-order functional differential equation with a state derivative dependent delay, Colloq. math. 79QTR{bf}{ }(1999), 273-281.
J.G. Si and X.P. Wang, Analytic solutions of a second-order iterative functional differential equation, J. Comput. Appl. Math.126QTR{bf}{ }(2000), 277-285.
J.G. Si and Z. Weinian, Analytic solutions of a second-order nonautonomous iterative functional differential equation, J. Math. Anal. Appl. 306(2) (2005), 398--412.
H.Z. Liu and W.R. Li, Analytic solutions of an iterative equation with second order derivatives, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 13A(2) (2006), 1030--1037.
H.Z. Liu, W.R. Li and Wen Rong, Discussion on the analytic solutions of the second-order iterated differential equation, Bull. Korean Math. Soc. 43(4) (2006), 791--804.
M. Kuczma, Functional equations in a single variable, Polish Scientific Publishers, Warszawa, 1968.
R.E. Rice, B. Schweizer and A. Sklar, When is $f(f(z))=az^{2}+bz+c$?, Amer. Math. Monthly 87(4)QTR{bf}{ }(1980), 252-263.
W. Jarczyk, On continuous solutions of the equation of invariant curves, Constantin Caratheodory: an international tribute, World Sci. Publishing, Teaneck 1-2QTR{bf}{ }(1991), 527--542.
J.G. Si and X.P. Wang, Analytic solutions of a polynomial-like iterative functional equation, Demonstratio Math. 32(1) (1999), 95--103.
W.N. Zhang, Discussion on the differentiable solutions of the iterated equation $sumlimits_{i=1}^{n}lambda _{i}f^{[i]}(x)=F(x),$ Nonlinear Anal. 15(4) (1990), 387--398.
J.G. Si, On analytic solutions of the equation of iterative curves, C.R. Math. Rep. Acad. Sci .CanadaQTR{bf}{ }17(1) (1995), 49-52.
W.R. Li, Zheng and S.S. Cheng, Analytic solution of an iterative differential equation, (Chinese) Math. Practice Theory 32(6) (2002), 994--998.
W.R. Li and S.S. Cheng, Analytic solutions of an iterative functional equation, Aequationes Math. 68(1-2) (2004), 21--27.
J. G. Si and S. S. Cheng, Note on an iterative functional differential equation, Demonstratio Math. 31(3) (1998), 609--614.
et="thebibliography" >QIT{QBI{}{qJ5}}J.G. Si, Analytic solutions of a functional equation for invariant curves, J. Math. Anal. Appl, 259 (2001), 83-93.
J.G. Si and Z. Weinian, Analytic solutions of a nonlinear iterative equation near neutral fixed points and poles, J. Math. Anal. Appl. 284(1) (2003), 373-388.
J.G. Si, On the monotonic continuous solutions of some iterated equation, Demonstratio Math. 31(3) (1998), 609--614.
W. Nowakowska and J. Werbowski, Oscillatory solutions of linear iterative functional equations, Indian J. Pure Appl. Math. 35(4) (2004), 429--439.
J. Kobza, Iterative functional equation $x(x(t)=f(t)$ with $f(t)$ piecewise linear, J. Comput. Appl. Math. 115(1-2) (2000), 331--347.
A.Q. Qi and J.G. Si, Discussion on the continuous solutions of a functional equation, Ann. Differential Equations 16(1) (2000), 56--61.
J.G. Si and Z. Weinian, On $C^{2}$ solutions of a functional equations, Acta Math. Sinica 14 (1998), 705-710.
H. Urabe, On entire solutions of the iterative functional equation $g(g(z))=F(z)$, Bull. Kyoto Univ. Ed. Ser. B 74 (1989), 13--26.
N. Seiji, On the Functional equation $f(p+qx+rf(x))=a+bx+cf(x),$ Aequationes Math. 11 (1974), 199--211.

W.N. Zhang, einian, Discussion on the differentiable solutions of the iterated equation $sumlimits_{i=1}^{n}lambda _{i}f^{[i]}(x)=F(x)$, Nonlinear Anal. 15(4) (1990), 387--398.
X.P. Wang and J.G. Si, Differentiable solutions of an iterative functional equation, Aequationes Math. 61(1-2) (2001), 79--96.
Z. Liu and S.M. Kang, Applications of Schauder's fixed-point theorem with respect to iterated functional equations, Appl. Math. Lett. 14(8) (2001), 955--962.
X.H. Liu, Existence and uniqueness of $C^{m}$ solutions for a system of iterative functional equations, (Chinese) J. Math. Study 33(3) (2000), 265--273.
Y.W. Lin and T.T. Lu, Method of Undetermined Coefficients for Analytic Solutions of Iterative Functional Differential Equations of First Order, International e-Journal of Engineering Mathematics: Theory and Applications, 8:74-89, 2010.
J. Belair, Population models with state-dependent delays, Lecture Notes in Pure and Appl. Math. 131QTR{bf}{ }(1991), 165-176.
M.C. Michael, Commodity price fluctuations: price dependent delays and nonlinearities as explanatory factors, J. Econom. Theory 48(2) (1989), 497--509.

M.P. John, R.D. Nussbaum, A differential-delay equation arising in optics and physiology, SIAM J. Math. Anal. 20(2) (1989), 249--292.

E. Feckan, On certain type of functional-differential equations, Math. Slovaca 43(1)QTR{bf}{ }(1993), 39-43.
H.H. Wu, On existences and asymptotic behaviors of strong solutions of equation $x^{prime }(t)=f(x(x(t))$, Ann. of Diff. Eqs. 9(3) (1993), 336-351.
H.K. Xu, Existence results on iterative functional differential equations, Comm. Appl. Nonlinear Anal. 8(4) (2001), 89--95.

J.G. Si and S.S. Cheng, Smooth solutions of a nonhomogeneous iterative functional-differential equation, Proc. Roy. Soc. Edinburgh Sect. A 128(4) (1998), 821--831.
J.G. Si and X.P. Wang, Smooth solutions of a nonhomogeneous iterative functional-differential equation with variable coefficients, J. Math. Anal. Appl. 226(2) (1998), 377--392.
J.G. Si, Wang, X.P. Wang and S.S. Cheng, Nondecreasing and convex $C^{2}$-solutions of an iterative functional-differential equation, Aequationes Math. 60(1-2) (2000), 38--56.
J. Mei, Existence and uniqueness of solutions to a class of functional differential-iterative equations, (Chinese) J. Beijing Inst. Technol. 17(4) (1997), 401--407.
Liu, X.P Wang, J. Mei and X.F. Xiang, An initial value problem for the differential-iterative equation $x^{prime prime }(t)=f(x(x(t)))$, (Chinese) Acta Sci. Natur. Univ. Jilin. 3QTR{bf}{ (}2000), 39--41.
Liu, X.P. Wang and J. Mei, Initial value problem for a second order non-autonomous functional-differential iterative equation, (Chinese) Acta Math. Sinica 45(4) (2002), 711--718.
Liu, X.P. Wang, J. Mei and W.G. Ge, A class of nonautonomous functional-differential iterative equations, (Chinese) Gaoxiao Yingyong Shuxue Xuebao Ser. A 13(3) (1998), 249--256.
M. Kulczycki and J. Tabor, Iterative functional equations in the class of Lipschitz functions, Aequationes Math. 64(1-2) (2002), 24--33.
P. Andrzej, On some iterative-differential equations. I. Zeszyty Nauk. Uniw. Jagiello. Prace Mat. No. QTR{bf}{12} (1968), 53--56.
P. Andrzej, On some iterative-differential equations. II. Zeszyty Nauk. Uniw. Jagiello. Prace Mat. Zeszyt QTR{bf}{13} (1969), 49--51.
P. Andrzej, On some iterative-differential equations. III. Zeszyty Nauk. Uniw. Jagiello. Prace Mat. No. QTR{bf}{15} (1971), 125--130.
W.G. Ge and Y. Mo, Existence of solutions to differential-iterative equation. J. Beijing Inst. Tech. QTR{bf}{6(}3) (1997), 192--200.
W.G. Ge, Uniqueness of solutions to differential-iterative equation. J. Beijing Inst. Tech. QTR{bf}{6(}3) (1997), 201--207.
Z. Liu and S.M. Kang, Applications of Schauder's fixed-point theorem with respect to iterated functional equations. Applied Mathematics Letters QTR{bf}{14 }(2001), 955-962.
J.G. Si and H. Zhao, Local invertible analytic solutions for an iterative differential equation related to a discrete derivatives sequence, J. Math. Anal. Appl, 335(1) (2007), 428-442.
X.L. Liu, Existence of an analytic solution for a first-order iterative functional differential equation, (Chinese) J. Shandong Univ. Nat. Sci. 42(12) (2007), 82-86.
J. Liu, Analytic solutions of a first order iterative functional differential equation, Results Math. 55(1-2) (2009), 129--137.
H. Liu and F. Qiu, Analytic solutions of an iterative equation with first order derivative, Ann. Differential Equations 21(3) (2005), 337--342.
F. Qiu and H.Z. Liu, Analytic solutions of a first order iterative differential equation $x^{prime }(z)=x(p(z)+bx(z))$, Demonstratio Math. 39(1) (2006), 81--90.
L.X. Liu, Analytic solutions of an iterative functional differential equation, (Chinese) J. Shandong Univ. Nat. Sci. 43(10) (2008), 41-45.
P. Zhang, Analytic solutions of a first order functional differential equation with a state derivative dependent delay, Electron. J. Differential Equations 51 2009, 1-9.
J.G. Si and M. Ma, Local invertible analytic solution of a functional differential equation with deviating arguments depending on the state derivative, J. Math. Anal. Appl. 327(1) (2007), 723--734.
J. Kobza, Numerical solution of some iterative differential equation. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 37 (1998) 47--55.
F. Hartung; T. L. Herdman, J. Turi, On existence, uniqueness and numerical approximation for neutral equations with state-dependent delays, Appl. Numer. Math. 24(2-3) (1997) 393-409.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code