Responsive image
博碩士論文 etd-0903110-230732 詳細資訊
Title page for etd-0903110-230732
論文名稱
Title
工具電極位置對電解加工中微鎢針形狀之影響
Effect of Tool Electrode Position on the shapes of Micro tungsten needle using electrochemical machining
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-22
繳交日期
Date of Submission
2010-09-03
關鍵字
Keywords
電解加工、鎢棒、加工間隙
Electrochemical machining, Tungsten rod, Machining gap
統計
Statistics
本論文已被瀏覽 5629 次,被下載 0
The thesis/dissertation has been browsed 5629 times, has been downloaded 0 times.
中文摘要
本研究使用自行研製之微電解加工試驗機探討不同供應電壓以及不同工件最高位置對工件外形之影響。將外圍包覆絕緣物,且尖端僅露出直徑50μm之鐵針做為陰極,以及作為陽極且可上下往復運動之直徑200μm鎢棒工件浸入含2wt.%之氫氧化鈉電解液中進行電解加工。
實驗結果發現,由於工件於加工過程中長度以及直徑皆會改變,因此工件於每次上下之往復運動時,需手動調整工件末端最高位置以及加工間隙以得到外觀均勻之圓鎢棒。此外,當供應電壓較大時,工件移除率較快,但是長度與直徑變化皆難以控制。反之,當供應電壓較小時,工件移除率較慢,但是長度與直徑變化皆可控制。最後,先以高供應電壓快速加工工件後,再以低供應電壓進行電解加工,即可加工出直徑約2μm,長度約200μm,長度直徑比約為100 之高長度直徑比之均勻圓棒。
Abstract
In the study, a self-developed electrolytic micro-machining tester is employed to investigate the effects of the supply voltage and the highest position of the workpiece relative to the tool on the geometry of the tungsten rod. The peripheral surface of the iron needle (tool) is insulated by an insulator and its tip with a diameter of 50μm is exposed to the electrolyte as a cathode. The tungsten rod (workpiece) with 200μm in diameter reciprocates as an anode. Both the cathode and the anode are dipped into an aqueous electrolyte of 2wt % sodium hydroxide to proceed electrochemical machining.
Experimental results show that since the length and the diameter of the workpiece are varied during the machining process, it is necessary to manually adjust the highest position and the gap between the workpiece and the tool in each reciprocating motion to achieve a uniform tungsten rod. Moreover, because of the higher removal rate of the workpiece at the higher supply voltage, it is hard to control the geometry of the workpiece. On the contrary, the geometry of the workpiece can be controlled at the lower supply voltage. Finally, the workpiece is first machined at the higher supply voltage, and then the supply voltage is switched to the lower one to achieve a uniform tungsten rod with 2μm in diameter and 200μm in length, or 100 in aspect ratio.
目次 Table of Contents
總 目 錄
總目錄......................................................................................I
圖目錄......................................................................................IV
表目錄......................................................................................VIII
中文摘要..................................................................................IX
英文摘要..................................................................................X

第一章 緒論..........................................................................1
1.1 前言..................................................................................1
1.2 文獻回顧..........................................................................3
1.2.1 電化學加工文獻............................................................3
1.2.2 探針與微電極之製作....................................................6
1.3 研究目的..........................................................................12
第二章 實驗設備及實驗方法..............................................13
2.1 實驗設備...........................................................................13
2.1.1 微電解加工試驗機系統............................................13
2.1.2實驗資料蒐集分析與訊號量測設備.........................17
2.1.2.1數位式儲存示波器..............................................17
2.1.2.2高倍率顯微鏡設備..............................................17
2.1.2.3量測與資料收集分析..........................................22
2.2 實驗試片之材料特性與幾何形狀.................................23
2.2.1鎢針之材料特性與幾何形狀.....................................23
2.2.2電解液的選擇.............................................................24
2.2.3 工具電極....................................................................26
2.3 試片處理...........................................................................28
2.3.1 微鎢棒工件................................................................28
2.3.2 工具電極....................................................................29
2.4 實驗條件設定...................................................................30
2.5 實驗步驟...........................................................................32
2.5.1 NaOH電解液之調配................................................32
2.5.2 電流波形之量測.......................................................33
2.5.3 實驗流程...................................................................34
第三章 前導實驗.................................................................37
3.1 加工間隙對工件外形之影響..........................................38
3.2 不同工件末端面之最高位置對工件外形之影響..........40
3.3 主軸轉速之影響..............................................................44
第四章 實驗結果與討論........................................................48
4.1 不同加工方式對工件之直徑與錐度變化.......................48
4.2 不同供應電壓對工件外形之影響...................................56
4.2.1 長度方向之縮短量....................................................56
4.2.2 直徑方向之變化........................................................61
4.2.3 兩階段供應電壓加工................................................66
4.3 工件末端最高位置之影響...............................................69
4.4 高長度直徑比之微鎢針之製作.......................................79
第五章 結論與未來研究方向.................................................83
5.1 結論...................................................................................83
5.2 未來研究方向...................................................................85
附錄A.......................................................................................86
附錄B.......................................................................................89
參考文獻..................................................................................96
參考文獻 References
【1】 J.A. McGeough, “Principles of electrochemical Machining, chapman & hall”, London, 1974, pp.1-10.
【2】 A.R. Mileham, S.J. Harvey and K.J. Stout , “The characterization of electrochemically machined surfaces”, Wear, 109, 1986, pp. 207-214.
【3】 R. Venkatachalam, S. Mohan, S. Guruviah, “Electropolishing of stainless steel from a low concentration phosphoric acid electrolyte”, Metal Finishing, 89, No. 4,1991, pp. 47-50 .
【4】 M.A. Bejar and F. Gutierrez, “On the determination of current efficiency in electrochemical machining with a variable gap”, Journal of Materials Processing Technology , 37, 1993, pp. 691-699.
【5】 V. Fascio et al., Int. Symp. Micromech. & Hum. Sci., (1999)179-183.
【6】 R. Wüthrich et al., Int. Symp. Micromech. & Hum. Sci., (1999)185-191
【7】 A. Muttamara et al., J. Mater. Proc. Techn., 140(2003)243-247
【8】 H. hocheng, Y. H. Sun, S. C. Lin and P. S. Kao, A material removal analysis of electrochemical machining using flat-end cathode. Journal of Material Processing Technology, Vol. 140, pp. 264-268(2003)
【9】 B. Bhattacharyya and J. Munda, “Experimental investigation on the influent of electrochemical machining parameters on machining rate and accuracy in micromachining domain”, International Journal of Machine Tool and Manufacture, 43, 2003, pp. 1301-1310.
【10】 李碩仁, 施博中, 王忠祥, 崔海平, 林庭凱, 江文欽 ,吳俊賢 ,“脈衝式表面電解拋光技術研究”,第二十屆機械工程研討會論文集, 2003, pp. 923-930
【11】 J. Kozak, K. P. Rajurkar and Y. Makker, Selected problems of micro-electrochemical machining, Journal of Material Processing Technology, Vol. 149, pp.426-431(2004).
【12】 T. Kurita, C. Endo, Y. Matsui, K. Terasawa, F. Tanaka, H. Ikeda, K. Oguchi and K. Kobayashi, Mechanical/electrochemical complex machining method for efficient, accurate, and environmentally benign process, International Journal of Machine Tool and Maunfacture, Vol. 48, pp. 1599-1604(2006).
【13】 J. C. d. S. Neto, E. M. d. Silva and M. B. d. Silva, Intervening variables in electrochemical machining, Journal of Materials Processing Tecnology, Vol. 179, pp. 92-96(2006).
【14】 G. Binnibg, H. Rohrer, and C. Cerber, Atomic force microscopy, Phys Rev. Lett, Vol. 56, pp. 930(1986).
【15】 郭詩坪, “碳化鎢微細電極的成形性及鈦合金的微孔放電加工特性研究”, 國立中央大學機械工程研究所碩士論文, 1998。
【16】 Y. M. Lim and S. H. Kim, “An electrochemical fabrication method for extremely thin cylindrical micro pin”, International Journal of Machine Tools & Manufacture, 41, 2000, pp. 2287-2296.
【17】 Y. M. Lim, H. J. Lim, J. R. Liu and S. H. Kim, “Fabrication of cylindrical micro pins with various diameters using dc current density control”, Journal of Materials Processing Technology,141, 2003, pp. 251-255.
【18】 吳偉堯, 郭佳儱, 李季龍, 游智翔, 黃俊德, 解安國, “ 電解微針成形及氣中放電製作微球狀電極之研究 ”, 第十九屆機械工程研討會論文集, 2002, pp. 731- 738
【19】 M. Yamazaki, T. Suzuki, N. Mori, M. Kunieda, “EDM of micro-rods by self-drilled holes”, Journal of Materials Processing Technology, 149, 2004, pp. 134-138
【20】 D.Y. Sheu, “Multi-spherical probe machining by EDM combining WEDG technology with one-pulse electro-discharge”, Journal of Materials Processing Technology, 149, 2004, pp. 597-603.
【21】 Z. Wang, B. Zhu and G. Cao, “Fabricating microelectrode by electrochemical micromachining”, Proceedings of SPIE, 6041, 2006, pp. 1-5
【22】 B. J. Park, B. H. Kim, C. N. Chu, “The Effect of Tool Electrode Size on Characteristics of Micro Electrochemical Machining”, Annals of CIRP, Vol.55, 2006.
【23】 S. H. Choi, S. H. Ryu, D. K. Choi, C. N. Chu, Fabrication of WC micro-shaft by using electrochemical etching, Int J Adv Manuf Technol 31 (2007) 682-687.
【24】 S. H. Choi, S.H. Ryu and C.N. Chu, “Fabrication of WC micro-shaft by using electrochemical etching”, International Journal of Advanced Manufacture Technology, 31, 2007, pp. 682-687.
【25】 E. S. Lee, S. Y. Baek, and C. R. Cho, “A study of The characteristics for electrochemical micromachining with ultrashort voltage pulses”, International Journal of Advanced Manufacture Technology, 31, 2007, pp. 762-769.
【26】 R. Hobara, S. Yoshimoto, and S. Hasegawa, “Dynamic electrochemical etching technique for tungsten tips suitable for multi-tip scanning tunneling microscopes”, Journal of Surface Science and Nanotechnology, 5, 2007, pp. 94-98.
【27】 葉佳錡,電解加工條件對微鎢針幾何形狀及尺寸之影響, 國立中山大學機械與機電工程研究所碩士論文(2007).
【28】 M. Wang, D. Zhu and L. Wang, Preparation of electrode array by electrochemical etching based on FEM, Journal of Material Science and Technology, Vol. 24(6), pp. 845-849(2008).
【29】 王泳翔,高長度直徑比的微米級圓針之研製,國立中山大學機械與機電工程研究所碩士論文(2008).
【30】 Shi Hyoung Ryu, “Micro fabrication by electrochemical process in citric acid electrolyte”, journal of materials processing technology(2008).
【31】 陳裕豐,高潔淨閥件之流道表面處理-電解拋光技術,機械工雜誌, 1999年9月號, pp. 230-240。
【32】 畑本光興,近藤光,精密電解加工方法及裝置,日本專利,專利號碼 8-312179。
【33】佐藤敏一, “電解加工と化学加工”, pp.26-31
【34】A. E. Debarr and D. A. Oliver, “Electrochemical machining”, Macdonald, 1968, pp. 59.
【35】佐藤敏一, “電解加工と化学加工”, pp.38-39。
【36】 J. F. Kahles, “Melals handbook” 3, edited by T. Lyman, American Society for Metals, 1967, pp. 234.
【37】A. E. Debarr and D. A. Oliver, “Electrochemical machining”, Macdonald, 1968, pp. 112.
【38】黃成達,微鎢棒之電化學加工機制研究,國立中山大學機械與機電工程研究所碩士論文(2009).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.222.148.124
論文開放下載的時間是 校外不公開

Your IP address is 18.222.148.124
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code