Responsive image
博碩士論文 etd-0904104-175730 詳細資訊
Title page for etd-0904104-175730
論文名稱
Title
干涉儀式光纖水中聽音器之構型分析
The Configuration Analysis of Interferometric Hydrophones
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-12
繳交日期
Date of Submission
2004-09-04
關鍵字
Keywords
桑克干涉儀、水中聽音器、馬赫-詹德干涉儀、麥克森干涉儀
Hydrophone, Michelson interferometer, Sagnac interferometer, Mach-Zehnder interferometer
統計
Statistics
本論文已被瀏覽 5715 次,被下載 3475
The thesis/dissertation has been browsed 5715 times, has been downloaded 3475 times.
中文摘要
光纖對聲波訊號,有高度的靈敏度,利用此一特性,藉光纖來製作水中聽音器,水中聲波對感測光纖造成形變,使得感測光纖中的導光相對於參考光纖產生相位差,利用解調系統檢測出干涉訊號,經過訊號處理,將相位差轉為物理場的訊號。本論文分析麥克森、補償式馬赫-詹德、馬赫-詹德與桑克混合型干涉儀等三種光路架構,利用數學方式來做理論的分析,比較三種光路架構對靈敏度與偏振狀態的優缺點。並對桑克型干涉儀架構的靈敏度、延遲光纖與物理場頻率,利用程式模擬其三者的關係。
實驗方面,利用標準水中聽音器B&K 8103來做校正,使用PGC技術解調,來測量三種光路偵測水中聲波的動態範圍。本論文量測到的結果為:麥克森與補償式馬赫-詹德架構動態範圍約為10 dB,最小可測得聲波訊號靈敏度分別為 -200 dB re V/1μPa與 -205 dB re V/1μPa,馬赫-詹德與桑克混合型架構動態範圍為3 dB,最小可測得聲波訊號靈敏度為 -212 dB re V/1μPa。
Abstract
The interferometeric optical fiber sensor has high sensitivity for sound signal. This characteristic is used to design hydrophones. The sound pressure causes the optical fiber to change its shape. So as to induce phase difference between sensing and reference arms. Using the demodulation system, we can get the signal we want. In this thesis, we plan to analyze three different kinds of optic configurations, such as Michelson, compensating Mach-Zehnder, hybrid configuration of Mach-Zehnder and Sagnac interferometers. The mathematical methods are used to compare their characters. We also use software to simulate the relation among sensitivity, delay fiber and frequency character of the Sagnac interferometer.
In our experiment, we use PGC modulation technology and compare the results with a standard hydrophone B&K 8103 for calibration. We also measure the dynamic range of proposed three interferometers. The measurement result of this paper is as following: Michelson and compensating type Mach-Zehnder interferometer dynamic range were about 24.90 dB and 13.98 dB, the acoustic signal sensitivity was -201.67 dB re V/1uPa and -205.97 dB re V/Pa, respectively. The dynamic range of the hybrid of Mach-Zehnder and Sagnac type interferometer was 33.67 dB and acoustic signal sensitivity was -212.47 dB re V/1uPa.
目次 Table of Contents
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 vii
圖目錄 ix
符號表 xii
第一章 簡介
1.1 研究背景與文獻回顧 1
1.2 研究動機 3
1.3 論文結構 4
第二章 感測系統之原理
2.1 感測原理 5
2.1.1 光纖感測原理 5
2.1.2 干涉原理 6
2.2 感測系統之基本架構 7
2.3 光訊號單元 8
2.3.1 摻鉺光纖放大器自發性光源 8
2.3.2 分散回饋式雷射 8
2.4 感測單元 10
2.4.1 2x2耦合器 10
2.4.2 法拉第旋轉鏡 11
2.4.3 PZT相位調制器 11
2.4.4 偏振控制器 13
2.4.5 感測頭 13
2.4.6 光學元件特性參數 14
2.5 訊號處理單元 16
2.5.1 解調方式概述 16
2.5.2 相位載波訊號技術 18
2.6 系統元件的數學模型 20
2.6.1 光纖瓊斯矩陣 20
2.6.2 耦合器瓊斯矩陣 21
2.6.3 法拉第旋轉鏡的瓊斯矩陣 21
2.6.4 摺疊光纖的瓊斯矩陣 22
第三章 光纖感測系統之構型分析
3.1 馬赫-詹德與桑克混合型架構 23
3.1.1 干涉光路徑分析 23
3.1.2 干涉光數學推導 24
3.1.3 干涉光數學分析 26
3.2 補償式馬赫-詹德架構 27
3.2.1 干涉光路徑分析 27
3.2.2 干涉光數學推導與分析 28
3.3 麥克森光路架構 29
3.3.1 干涉光路徑分析 29
3.3.2 干涉光數學推導與分析 29
3.4 偏振分析 30
3.4.1 馬赫-詹德與桑克混合型偏振分析 30
3.4.2 補償式馬赫-詹德架構偏振分析 33
3.4.3 麥克森架構偏振分析 34
3.5 光路訊號模擬與分析 35
3.5.1 桑克干涉儀干涉訊號模擬 35
3.5.2 不同工作點干涉訊號模擬 37
第四章 實驗與結果討論
4.1 系統元件特性量測 38
4.1.1 光耦合器特性量測 38
4.1.2 光循環器特性量測 39
4.1.3 光纖彎曲損失量測 41
4.1.4 PZT特性量測 43
4.2 水中聲波校正 45
4.2.1 系統量測架構 45
4.2.2 聲源校正 46
4.3 水中聲波量測 47
4.3.1 麥克森架構水中聲波量測 47
4.3.2 補償式馬赫-詹德架構水中聲波量測 49
4.3.3 馬赫-詹德與桑克混合型架構水中聲波量測 49
4.4 實驗結果討論 50
第五章 結論與未來展望
5.1 結論 52
5.1.1 光纖式與壓電式水中聽音器之比較 52
5.1.2 三種光路架構之比較 52
5.2 未來展望 53
參考文獻 54
附表 57
附圖 73
附錄 117
中英文對照表 122
參考文獻 References
1. S. Bradley, S Addison, I. G. Priede, M. Collins, and P. M. Bagley, “A deep-ocean fish tracking system using code-activated transponders and hydrophone array,” IEE, pp. 34-38, 1997.
2. H. L. W. Chan, A. H. Ramelan, I. L. Guy, and D. C. Price, “VF2/VF3 copolymer line hydrophone array for ultrasonic field characterization,” Proc. 1990 IEEE Ultrason. Symp., vol. 1, pp. 337-340, 1990.
3. G. R. Harris, “Medical ultrasound exposure measurements: update on devices, methods, and problems,” Proc. 1999 IEEE Ultrason. Symp., vol. 2, pp. 1341-1352, 1999.
4. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, Jr., J. H. Cole, S. C. Rashleigh, and R. G. Priest, “Optical fiber sensor technology, ” IEEE J. Quantum Electron., vol. QE-18, no. 4, pp. 626-665, 1982.
5. Byoungho Lee, “Review of the present status of optical fiber sensors,” Opt. Fiber Technol., vol. 9, pp.57-79, 2003.
6. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol., vol. 15, no. 8, pp. 1442-1463, 1997.
7. Nobuaki Takahashi, Kazuto Yoshimura, Sumio Takahashi, and Kazuo Imamura, “Development of an optical fiber hydrophone with fiber Bragg grating,” Ultrasonics, vol. 38, pp. 581-585, 2000.
8. N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Ultrasonic hydrophone based on short in-fiber Bragg gratings,” Applied Optics, vol. 37, no. 34, pp.8120-8128, 1998.
9. A. D. Kersey, and A. Dandridge, “Applications of fiber-optic sensors,” IEEE Trans. Components, Hybrids Manufactururing Technol., vol. 13, pp. 137-143, 1990.
10. A. B. Tveten, A. M. Yurek, Y. Y. Chao, A. Dandridge, “A high frequency fiber optic hydrophone,” Optical Fiber Sensors Conference 1992, pp. 350-353, 1992.
11. T. K. Lim, Y. Zhou, Y. Lin, Y. M. Yip, and Y. L. Lam, “Fiber optic acoustic hydrophone with double Mach-Zehnder interferometers of optical path length compensation, ” Opt. Commun., vol. 159, pp. 301-308, 1999.
12. 周日峰,桑克干涉式水中聽音器之設計,pp.38-39, 國立中山大學,電機工程學系碩士論文,高雄市,1999.
13. S. J. Spammer, and P. L. Swart, “Differentiating optical-fiber Mach-Zehnder interferometer,” Appl. Opt., vol. 34, no. 13, pp. 2350-2353, 1995.
14. O. Farsund, C. Erbeia, C. Lachaize, A. Hordvik, K. Nakken, A. Berg, G. B. Havsgard, L. Vines, and G. Wang, “Design and Test of 32-element Fiber Optic Hydrophone System,” OFS 2002, vol. 1, pp. 329-332, 2002.
15. June-Ho Lee, Dae-Yong Shin, Tae-Ho Kwon, Chin Woo Yi, and Jong-Kil Lee, “Ultrasonic Location using the Sagnac Interferometric Optical Fiber Sensor in Underwater,” Proc. of the 7th International Conference on Properties and Applications of Dielectric Materials, vol. 1, pp. 475-478, 2003.
16. G. B. Hocker, “ Fiber-optic sensing of pressure and temperature,” Appl. Opt., Vol. 18, No. 9, pp. 1445-1448, 1979.
17. Eric Udd, Fiber Optical Sensors, pp. 46-47, John Wiley and Sons, Inc.,New York, 1991.
18. Eric Udd, Fiber Optical Sensors, pp. 276-277, John Wiley and Sons, Inc.,New York, 1991.
19. Joseph T. Verdeyen, Laser Electronics, pp. 234-238, Prentice Hall International, Inc., 1995.
20. Govind P. Agrawal, Fiber-Optic Communication Systems, pp. 100-102, John Wiley and Sons, Inc., New York, 2002.
21. K. T. V. Grattan and B. T. Meggitt, Optical Fiber Sensor Technology, Vol. 2, pp. 168-170, Chapman & Hall, Inc., London, 1998.
22. M. Ngadino, A. A. Hassan, M. K. Abdullah, and H. Ahmad, “Loss dependence on pull speed and pull delay of 3 dB fused tapered single mode fiber coupler,” ICSE’98 Proc., pp.143-146, 1998.
23. 康獻文,光纖分佈式洩漏偵測系統之新構型設計, pp. 13-14, 國立中山大學,電機工程學系碩士論文,高雄市, 2001.
24. W. W. Lin, S. T. Shih, M. H. Chen, and S. C. Huang, “The transfer functions of PZT phase modulators in optical fiber sensors,” Proc. Natl. Sci. Counc. ROC(A)., vol. 18, no. 6, pp. 570-575, 1994.
25. Eric Udd, Fiber Optical Sensors, pp. 280-290, John Wiley and Sons, Inc., New York,1991.
26. Tae-Seong Jang, Seung-Seok Lee, Bum Kwon, Wang-Joo Lee, and Jung Ju Lee, “Noncontact Detection of Ultrasonic Waves Using Fiber Optic Sagnac Interferometer,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 49, no. 6, pp. 767-775, 2002.
27. A. Dandridge, A. B. Tveten, and T. G. Giallorenzi, “Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier,” IEEE J. Quantum Electron., vol. QE-18, no. 10, pp.1647-1653, 1982.
28. A. D. Kersey, M. J. Marrone, and M. A. Davis, “Polarization-insensitive fibre optic Michelson interferometer,” Electron. Lett., vol. 27, no. 6, pp. 518-520, 1991.
29. Yu, and A. S. Siddiqui, “Systematic method for the analysis of optical fibre circuits,” IEE Proc.-Optoelectron., vol. 142, no. 4, pp. 165-175, 1995.
30. 黃建道,光纖洩漏偵測器之研究, pp. 94-95, 國立中山大學,電機工程學系碩士論文,高雄市, 2000.
31. 蔡孟燦,光纖分佈式感測系統之氣體管線偵漏, pp. 6-7, 國立中山大學,電機工程學系碩士論文,高雄市, 2002.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code