Responsive image
博碩士論文 etd-0904104-192034 詳細資訊
Title page for etd-0904104-192034
論文名稱
Title
以人工濕地處理垃圾滲出水可行性之研究
The Study of Treating Leachate in Landfill by Constructed Wetlands
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
176
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-19
繳交日期
Date of Submission
2004-09-04
關鍵字
Keywords
人工濕地、垃圾滲出水、總氮、總磷、碳源、溫度校正係數
temperature correction coefficient, carbon source, Constructed wetlands, landfill leachate, total phosphorus, total nitrogen
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
本研究係以實驗室規模之人工濕地處理系統,直接處理垃圾滲出水之原污水及經傳統污水廠二級處理過之放流水。主要的研究目的,在原垃圾滲出水方面,即在於比較經不同型態人工濕地處理系統處理過後,是否可以達到放流水標準;至於在二級放流水方面,則在探討人工濕地系統是否能再淨化廢水中之污染物,以評估再淨化過後之垃圾滲出水其回收再利用之可行性。此人工濕地系統設置於本校海科院大樓頂樓之溫室中,並於2003年7月操作至2004年5月。人工濕地系統型態,主要包括自由表面流(FWS)及表面下流系統(SSF)串聯而成之二段式人工濕地系統。在研究試驗操作期間,進行不同之廢水來源、植物種類的配置及是否添加碳源之實驗,試程大致可分為二個階段:(一)2003年7月至2003年12月;(二)2004年2月至2004年5月。第一階段試成三個實驗組P1、P2及P3之總氮除率分別為37±20%、50±11%及-6.1±37.8%;而氨氮之去除率則分別為84±11%、94±4%及60±24%;至於在總磷及磷酸鹽方面,P1、P2及P3系統則分別為37±14%、68±16%及77±16%與44±16%、75±8%及80±17%。研究期間所求得氨氮溫度校正係數(θ值)於P1、P2、P3、U1及U2系統中分別為0.921、0.949、0.926、1.043及0.785;磷酸鹽溫度校正係數(θ值)於P1、P2、P3、U1及U2系統中分別為1.006、0.981、1.070、1.235及0.843。在第二階段試程中,主要是以在添加碳源下是否會增加總氮及總氧化氮之去除率。實驗結果顯示,有添加碳源至SSF系統等,其總氮之放流水污染負荷約剩2 g/m2/day,而未添加碳源之放流水污染負荷則約剩6 g/m2/day;而TON之放流水污染負荷約剩1 g/m2/day以下,而未添加碳源之放流水污染負荷約剩2~ 3 g/m2/day。此一結果顯示出總氮及總氧化氮在添加碳源於系統中可增加有其去除的效果。
Abstract
In this research, we dealt with the original landfill leachate, and put the flowing water by a traditional second one that has dealt with of sewage factory directly with the constructed wetland systems in lab-scale. The purpose the study is to compare the experimental results after dealing the leachate by different constructed wetland process systems which was judge at if the, can reach the water quality standard. The constructed wetland systems in the study were set up in a greenhouse on campus, which were operated between May 2004 and July 2003. Constructed wetland systematic attitude, include Free Water Surface System (FWS) and Subsurface Flow System (SSF) contact but two type constructed wetland system that become mainly. In the test use different waste water sources to feet the systems, and we planted different species of plants, and add extra carbon source. Thus, we can divide the experiment into two stages: (1) From July of 2003 to December of 2003. (2) From February of 2004 to May of 2004. In each stage, we tested three experiment group P1, P2 and total nitrogen of P3 except that the rate is 37±20%, 50±11% respectively and -6.1±37.8%. The removal efficiencies of ammonia nitrogen were estimated equal to 84±11%, 94±4% and 60±24% respectively. For total phosphorus and phosphate, P1 , P2 and P3 system were measured equal to 37±14%, 68±16% and 77±16%and 44±16%, 75±8% and 80±17% respectively . The ammonia nitrogen temperature correction coefficient (θ value) were calculated to be 0.921, 0.949, 0.926, 1.043 and 0.785 for P1, P2, P3, U1 and U2 system, respectively. The phosphate temperature correction coefficients (θ values ) were measured to be 1.006, 0.981, 1.070, 1.235 and 0.843 respectively for P1, P2, P3, U1 and U2 system. In order to increase the removal efficiencies of total nitrogen, it was always by adding carbon source. The experimental result showed, that it is add carbon source wait by system to SSF , its President nitrogen is it flow water pollution load leave 2g/m2/day nearly to put to have, and has not added water pollution load has flowed in the putting of the carbon source nearly has 6g/m2/day left, And nearly remain under 1g/m2/day in the putting and flowing water pollution load of TON, and not added the putting of the carbon source water pollution load has flowed nearly has 2-3g/m2/day left. This result showed that high total nitrogen removal efficiencies were by adding carbon source.
目次 Table of Contents
中文摘要 I
Abstract II
第一章 前言 1-1
1-1 研究動機 1-1
1-2 研究目的及方向 1-2
第二章 文獻回顧 2-1
2-1 濕地定義與功能 2-1
2-1.1濕地的起源 2-1
2-1.2濕地的定義 2-1
2-1.3濕地的功能 2-5
2-2 濕地的種類與組成 2-10
2-2.1 濕地的種類 2-10
2-2.2濕地的組成 2-10
2-3濕地水生植物的功能 2-18
2-3.1 產生氧分子 2-18
2-3.2 植物根莖葉之組織提供大量之表面積微生物 2-19
2-3.3 氮、磷及重金屬的攝取 2-20
2-3.4 產生有機碳 2-21
2-3.5 遮光作用 2-21
2-3.6 增進過濾及沉降作用 2-22
2-4 人工濕地去除污染物之傳輸轉換機制 2-22
2-4.1 有機物與懸浮固體物 2-26
2-4.2 氮的循環 2-28
2-4.3 磷的循環 2-35
2-5人工濕地處理系統 2-36
2-5.1 人工濕地的種類 2-36
2-5.2 人工濕地的優缺點 2-41
第三章 研究設備與方法 3-1
3-1 概述 3-1
3-2 人工濕地處理系統之建立 3-1
3-2.1 進流水貯存槽 3-2
3-2.2 進出流管線 3-2
3-2.3 控制水位之水箱 3-2
3-2.4 自由表面流動式人工濕地系統(Free Water Surface System, FWS) 3-6
3-2.5 表面下流動式人工濕地系統(Subsurface Flow, SSF) 3-6
3-2.6 不種植物之控制濕地系統(Control Experiment, CE) 3-7
3-2.7 各系統之配置 3-7
3-3 廢水種類 3-13
3-3.1 垃圾滲出水原水 3-13
3-3.2 經垃圾掩埋場二級處理之二級放流水 3-13
3-4 植物種類 3-14
3-4.1 蘆葦 3-14
3-4.2 香蒲 3-14
3-4.3 萬年青 3-15
3-5 系統之操作方式 3-16
3-6 系統之操作條件 3-17
3-7 採樣與分析 3-19
3-7.1 採樣與監測 3-19
3-7.2 分析儀器及設備 3-20
3-7.3 水樣保存 3-21
3-7.4 分析方法 3-22
第四章 結果與討論 4-1
4-1 現場監測 4-1
4-1.1 原垃圾滲出水(原廢水) 4-1
4-1.2 第一階段之二級放流水(二級水) 4-13
4-2 第一階段不同曝氣時期之營養鹽之差異 4-17
4-2.1 原垃圾滲出水氮化物之差異性 4-17
4-2.2 二級放流水氮化物之差異性 4-18
4-3 水質變化及去除效率 4-19
4-3.1 第一階段之原垃圾滲出水(原廢水) 4-20
4-3.2 第一階段之二級放流水(二級水) 4-35
4-4去除速率 4-43
4-4.1 第一階段之去除速率 4-44
4-4.2 第二階段去除速率 4-52
4-5 第一階段溫度校正係數及去除反應速率 4-55
4-5.1總氮之溫度校正係數 4-56
4-5.2 氨氮之溫度校正係數 4-61
4-5.3 總磷之溫度校正係數 4-64
4-5.4磷酸鹽之溫度校正係數 4-67
4-6 第二階段加蓋與未加蓋空白之差異性 4-71
4-7 土壤及廢水中重金屬之差異性 4-71
第五章 結論與建議 5-1
5-1 結論 5-1
5-2 建議 5-3
參考文獻 6-1
參考文獻 References
Armstrong, J. and Armstrong, W., 1990. Light-enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud. New Phytol. 114, pp. 121-128.
Barnes, D. and Bliss, P. J., 1983. Biological Control of Nitrogen in Wastewater Treatment. E. & F.N. Spon, London.
Bitton, G., 1994. Wastewater Microbiology. Wiley-Liss, Singapore, pp. 69-80.
Boyd, C.E., 1978. Chemical Composition of Wetland Plants. pp. 155-167. in R. E. Good, D.F. Whigham, and R. L. Simpson (Eds.), Freshwater Wetlands: Ecological Processes and Management Potential. New York: Academic Press.
Braskerud, B. C., 2002. Factors affecting nitrogen retention in small constructed wetlands treating agricultural non-point source pollution”. Ecological Engineering 18, pp.351-370.
Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands. Wat. Sci. & Tech. 35(5), pp. 11-17.
Brix, H., 1994. Functions of macophytes in constructed wetland. Wat. Sci & Tech. 29(4), pp. 71-78.
Brix, H., 1990. Gas Exchange through the soil-atmosphere of interphase and though dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage. Water Res. 24(2), pp. 259-266.
Bulc, T., Vrhovsek, D. and Kukanja, V., 1997. The use of constructed wetland for landfill leachate treatment. Wat. Sci. & Tech. 35(5), pp. 301-306.
Burgoon, P. S., Reddy, K. R. and DeBusk, T. A., 1995. Performance of sub-surface flow in wetland. Wat. Envion. Res. 67, pp. 855-862.
Chianese, A., Ranauro, R. and Verdone, N., 1999. Treatment of Landfill Leachate by Reverse Osmosis. Wat. Res. 33(3), pp. 647-652.
Copper, P. F., 1993. The Use of Reed Bed Systems to Treat Domestic Sewage: The European Design and Operations Guidelines for Reed Bed Treatment Systems. In G. A. Moshiri, Ed., Constructed Wetlands for water quality improvement. Lewis Publishers, Boca Raton, FL, pp. 203-217.
Gries, C., Kappen, L. and Lösch, R., 1990. Mechanism of flood tolerance in reed, Phragmites australis (Cav.) Trin. ex Steud. New Phytol. 114, pp. 589-593.
International Water Association, 2000. Constructed Wetlands for Pollution Control. Process, Performance, Design and Operation. IWA Publishing, London.
Jingsong, Yan and Shijun, Ma., 1997. The Function of Ecological Engineering in Environmental Conservation with Some Case Studies form China, Ecological Engineering for Wastewater Treatment, pp.21-36.
Juwarkar, S., Oke, B., Juwarkar, A. and Patnaik, S.M., 1995. Domestic Wastewater Treatment Through Constructed Wetland in India. Wat. Sci. & Tech. 32(3), pp. 291-294.
Kadlec, R. H. and R. L. Knight, 1996.Treatment Wetlands. Boca Raton, FL, USA: Lewis-CRC Press.
Yang, L., Chang, Hui-Ting and Lo Huang, Mong-Na, 2001. Nutrient removal in gravel- and soil-based wetland microcosms with and without vegetation. Ecological Engineering 18, pp. 91-105.
Mæhlum, T., 1995. Treatment of landfill leachate in on-site lagoons and constructed wetlands. Wat. Sci. & Tech. 32(3), pp. 129-135.
Mæhlum, T. and Warner, W. S., 1995. Cold-climate contructed wetland. Wat. Sci. & Tech. 32(3), pp. 95-101.
May, E., Butler, J.E., Ford, M.G., Ashworth, R., Williams, J.B. and Bahgat, M. M. M., 1990. Chemical and microbiological processes in gravel-bed hydroponic (GBH) systems for sewage treatment, in: Constructed Wetlands in Water Pollution Control, P. F. Copper and B. C. Findlater (Eds.), Pergamon Press, Oxford, UK, pp. 33-40.
Mays, P.A., Edwards, G.S., Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage”. Ecological Engineering 16, pp. 487–500, 2001.
Martin, C. D. and Johnson, K. D., 1995. The use of extended aeration and in-series surface-flow wetlands for landfill leachate treatment. Wat. Sci. Tech. 32(3), pp. 119-128.
Metcalf & Eddy, 1991. Chap 13 Natural treatment system. In Wastewater Engineering (Third Edition). pp.927-1016. Mcgraw-Hill, Inc. New York.
Metcalf and Eddy, Inc. 1991. Wastewater Engineering: Treatment, Disposal and Reuse (3rd ed.). McGraw-Hill, New York.
Mitsch, W.J. and J.G. Gosselink, 1993, Wetlands, 2nd. ed. New York, NY: Van Nostrand Reinhold, 722 pp.
Odum, E. P., 1971. Fundamentals of Ecology, 3rd. ed., W. B. Saunders Co., Philadelphia, 544p.
Painter, H. A. and Loveless, J. E., 1983. Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in activated sludge process. Wat. Res. 17, pp. 237-248.
Reddy, K. R. and E. M. D’Angelo, 1997. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Wat. Sci & Tech. 35(5), pp. 1-10.
Reddy, K. R., Khaleel, R., Overcash, M. R. and Westerman, P. W., 1979. A nonpoint source model for land areas receiving animal wastes. L. Mineralization of organic nitrogen. Trans. ASAE 22. 863-876
Surface, J. M., Peverly, J. H., Steenhuis, T. S. and Sanford, W. E., 1993. Effect of Season, Substrate Composition, and Plant Growth on Landfill Leachate Treatment in a Constructed Wetland. In: Moshiri, G.A. (Ed.), Constructed Wetlands for Water Quality Improvement. Lewis Publishers,Boca Raton, pp. 461-472.
Tanner, C. C., Clayton, J. S., Upsdell, M. P., 1995. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands - I. Removal of oxygen demand, suspended solids and fecal coliforms. Water Res. 29 (1), pp. 17-26.
Tanner, C. C., Clayton, J. S., Upsdell, M.P., 1995. Effect of loading rate and planting on treatment of dairy farm wastewaters in constructed wetlands – II. removal of nitrogen and phosphorus. Water Res. 29(1), pp. 27-34.
Tarnocai, C. 1979. Canadian Wetland Registry. In C. D. A. Rubec and F. C. Pollett, eds. Proceedings of a Workshop on Canadian Wetlands. Ecological Land Classification Series 12, Lands Directorate, Environment Canada, Saskatoon, Saskatchewan, pp. 9-38.
Tchobanoglous, G., 1993. Constructed wetlands and aquatic plant systems: research,design, operational, and monitoring issues. In G. A. Moshiri, Ed., Constructedwetlands for water quality improvement. Lewis Publishers,Boca Raton, pp. 23-34.
Tong Zhu and F. J. Sikora, 1995. Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands. Wat. Sci. & Tech. 32(3), pp. 219-228.
Tsai, C. T., Lin, S. T., Shue, Y. C. and Su, P. L., 1997. Electrolysis of Soluble Organic Matter in Leachate from Landfills. Wat. Res. 31(12), pp. 3073-3081.
U.S. EPA. A Handbook of Constructed Wetlands. (5 volumes, 1995) (Region III with USDA, NRCS, ISBN 0-16-052999-9)
U.S. EPA. 1990. National Pesticide Survey: Project Summary. U.S. Enviromenta Protection Agency, Washington, D.C.
U.S. EPA. 1975. Process Design Manual for Nitrogen Control. Office of Technology Transfer, Washington, D.C.
U.S. EPA. 1977. Wastewater Treatment Facilities for Sewered Small Communities. EPA-625/1-77-009.
U.S. EPA. Constructed Wetlands Treatment of Municipal Wastewaters. EPA/625/R-99/010,1999.
Vrhovsek, D., Kukanja, V. and Bulc, T., 1996. Constructed wetland (CW) for Industrial Waste Water Treatment. Wat. Res. 30(10), pp. 2287-2292.
Watson, J. T., Reed, S. C., Kadlec, R. H., Knight, R. L. and Whitehouse, A. E., 1989. Performance expectations and loading rates for constructed wetlands. In D. A. Hammer, Ed., Constructed wetlands for wastewater treatment. Lewis. pp. 319-351.
WPCF (Water Pollution Control Federation). 1983. Nutrient Control. Manual of Practice FD-7. Washington, DC: WPCF.
Staubitz, W. W. Surface, J. M. Steenhuis, T. S. Peverly, J. H. Lavine, M. J. Weeks, N. C. Sanford, W. E. and Kopka, R. J., 1989.Potential Use of Constructed Wetlands to Treat Landfill Leachate.” Constructed Wetlands for Wastewater Treatment—Municipal, Industrical and Agricultural, pp. 735-742.
Zoltai, S. C. 1979. An outline of the wetland regions of Canada. In C. D. A. Rubec and F. C. Pollett, eds. Proceedings of a Workshop on Canadian Wetlands. Ecological Land Classification Series 12, Lands Directorate, Environment Canada, Saskatoon, Saskatchewan, pp. 1-8.
Mitsch Willian J. & Gosselink James G. 作;章盛傑,邱文雅譯,濕地Wetland 2nd ,地景,1998。
中華民國野鳥保護協會,http://www.bird.org.tw/
行政院環保護署環境檢測研究所網站,http://www.niea.gov.tw.
何茂賢、荊樹人、林瑩峰、李得元、黃子榜,表面流動式人工溼地處理污染性河水之營養鹽,第8屆海峽兩岸研討會,新竹,2002。
李黃允,2001,以二階段人工濕地去除生活污水中之營養鹽,國立中山大學環境工程研究所,碩士論文。
拉姆薩公約官方網站,http://www.ramsar.org/
林春吉,2002,台灣水生植物○2-單子葉植物篇,田野影象出版社,頁239。
林瑩峰、荊樹人、李得元、王姿文,2001,人工濕地─水污染防治之生態工法,造園季刊,第40期,第17-24頁,九月號。
林曜松,被長期忽略的生態饗宴,1987,大自然,第16期,第26-17頁。
吳淑敏,節約水資源,你上道了嗎?,節約用水季刊,第23期,2001。
施珮瑜,以模廠型人工濕地處理煉油廢水之研究,中山大學海洋環境及工程研究所碩士論文,高雄,2001。
施凱鐘,2003,利用人工溼地處理受硝酸鹽污染地下水之研究。嘉南藥理科技大學環境工程衛生系,台南,碩士論文。
范煥榮、蘇弘毅、黃國書、黃啟旻,2003,掩埋場垃圾滲出水之生物毒性分析研究,第二十八屆廢水處理技術研討會,台中。
植物網頁-萬年青,http://www.au.edu.tw/ox_view/admin/kb/Plant%20Web/ new_page_191.htm
趙魁義,2002,地球之腎──濕地,化學工廠出版社,頁194。
濕地家族,http://www.cs.ccu.edu.tw/~wdy87/compute/work3/members.html
羅瑋琪,2002,以人工溼地處理煉油及煉鋼廢水之研究。國立中山大學海洋環境及工程研究所,高雄,碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.146.152.71
論文開放下載的時間是 校外不公開

Your IP address is 3.146.152.71
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code