Responsive image
博碩士論文 etd-0904104-203607 詳細資訊
Title page for etd-0904104-203607
論文名稱
Title
Dlk蛋白質的過度表現對人類肝癌細胞之癌症特性的影響
The effect of Dlk overexpression on the tumorigenicity of hepatoma cells.
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-28
繳交日期
Date of Submission
2004-09-04
關鍵字
Keywords
Dlk蛋白質、過度表現、肝癌細胞、癌症特性
overexpression, tumorigenicity, hepatoma cells, Dlk protein
統計
Statistics
本論文已被瀏覽 5719 次,被下載 8683
The thesis/dissertation has been browsed 5719 times, has been downloaded 8683 times.
中文摘要
Dlk (delta-like)本身是一種跨膜蛋白質,構造上包含:細胞外區域、跨膜區域和細胞內區域。dlk的主要構造在於細胞外區域有六個重覆排列的類似表皮細胞生長因子。此外,在這段細胞外的構造上有一處可被酵素作用的切點,位置約接近細胞膜近側,在經不知名酵素作用後,會產生可溶片段並釋出細胞外去進行作用。dlk屬於EGF-like homeotic superfamily的成員之一,被認為在細胞分化過程中可能扮演重要角色。dlk在文獻中有一些不同的名稱,例如:人類腎上腺特有的pG2蛋白質、存在於胎兒羊水中的FA-1蛋白質、來自基質細胞的SCP-1蛋白質、表現於老鼠前脂肪細胞的Pref-1蛋白質以及老鼠腎小球區特有的ZOG蛋白質等,這些不同名稱的蛋白質其實是同一基因的多樣性產物。dlk的主要功能包括:抑制脂肪細胞形成、協助造血細胞分化成熟以及參與神經內分泌細胞的分化等。與dlk有關的腫瘤皆具神經內分泌的特性且似乎與腫瘤的分化階段有關,分化程度最差的腫瘤細胞並不會表現dlk。目前被發現會表現dlk的人類腫瘤則僅有神經母細胞瘤及肺小細胞癌。
Dlk會抑制脂肪細胞的形成,相對間接減少脂肪合成酶的產生。近年來陸續有文獻證實脂肪合成酶的大量表現與許多常見的癌症有關,因此dlk在調控脂肪細胞的同時可能也間接防止癌細胞產生。dlk與胎兒的分化有關,而某些幼兒的癌症是因分化失衡所造成,另外dlk亦被證實是肝臟開始纖維化的重要因子,而肝臟纖維化有時是肝癌的早期病癥,所以dlk與癌症的產生似乎有正向關係。
為進一步釐清dlk與腫瘤細胞之間的關聯性,實驗中讓惡性肝癌細胞
SK-Hep-1過度表現dlk蛋白質,藉此來觀察分析細胞的癌症特色是否有所改變。實驗中針對dlk的全長及extracellular domain等不同蛋白質片段來進行分析,結果發現在缺乏血清的環境中,表現extracellular domain的細胞株均呈穩定生長,經細胞週期分析後發現其細胞凋亡的現象遠比其他細胞株輕微。將各細胞株以皮下注射殖入SCID mice體內,結果以攜帶dlk全長的細胞株所引發的腫瘤生長最為迅速,腫瘤體積最大。利用Boyden chambers及人為裂隙(gap)等方法進行細胞移行能力的分析,結果發現表現dlk的細胞株,不論是全長或extracellular domain,其移行能力均較對照組明顯減弱。因此,綜觀以上現象,dlk全長基因可以促進老鼠腫瘤的生長,而其細胞外的EGF-like repeats,具生長因子及抗細胞凋亡功能,可以協助細胞在缺乏血清的環境中穩定生長。
Abstract
Dlk is a transmembrane protein that possesses six epidermal growth factor-like sequences at the extracellular domain, a single transmembrane domain and an intracellular tail. The extracellular EFG-like region of Dlk can be released by action of an unknown protease that cuts the extracellular region near the cell membrane. Dlk belongs to the EGF-like homeotic protein family and has received many names: pG2, FA-1, Pref-1, SCP-1, ZOG and Dlk. All the proteins are identical or polymorphic products of a single gene. Dlk has been involved in several differentiation processes, such as adipogenesis, hematopoiesis and neuroendocrine differentiation. Dlk is also known as the preadipocyte factor-1 (Pref-1), is highly expressed in preadipocytes but is completely abolished in adipocytes. Pref-1 may function in the maintenance of the preadipocyte state and is a negative regulator of adipocyte differentiation.
Dlk is expressed in tumors with neuroendocrine features, such as human neuroblastoma, rat pheochromocytoma, and a subset of Small Cell Lung Cancer (SCLC) cell lines. The Dlk expression is probably associated with some differentiation stages because the most undifferentiated cells were lacking expression of Dlk. The finding suggests that Dlk plays an important role in differentiation and tumorigenesis of several cell types.
The study was designed to examine the influence of dlk overexpression on tumorigenicity of hepatoma cells. We constructed the mammalian expression vectors for full-length dlk, dlk extracellular domain, which were transfected into SK-Hep-1 cells for generation of stable clones. The transgene expressions in selected stable clones were verified by QRT-PCR and western blot analysis. Our results indicated that overexpression of extracellular domain significantly promoted the viability of SK-Hep1 cells during serum deprivation. In SCID mice, injection of full-length dlk clones led to increased tumor growth compared with the control groups. However, the migration ability was reduced in Dlk stable clones. In summary, these results suggested full-length Dlk promoted the tumor growth but reduced the migration ability of SK-Hep1 cells.
目次 Table of Contents
目錄

目錄 …………………………………………………… 1
中文摘要 ……………………………………………… 6
英文摘要 ……………………………………………… 8
縮寫 ………………………………………………… 10
前言 …………………………………………………… 11
實驗背景 ……………………………………………… 17
實驗目的 ……………………………………………… 18
實驗方法與材料 ……………………………………… 19
細胞株(Cell line) …………………………………… 19
細胞培養基(Culture medium) …………………… 19 細胞培養(Cell culture) …………………………… 19
抽取total RNA …………………………………… 20
製備cDNA(RT-PCR) ……………………………… 20
聚合酶連鎖反應(PCR) …………………………… 21
DNA電泳…………………………………………… 22
純化PCR產物 ……………………………………… 23
phCMV3載體的黏合反應(Ligation) …………… 23
轉形作用(Transformation) ……………………… 23
含轉形基因菌體的篩選 …………………………… 24
純化質體DNA ……………………………………… 24
核酸定序 …………………………………………… 25
細胞數目的測定 …………………………………… 26
轉染(Transfection)與選殖表現dlk基因的
細胞株 ……………………………………………… 27

選殖穩定表現dlk基因的細胞株(Selection of
stable clone) ………………………………………… 28

蛋白質濃度分析 …………………………………… 28
SDS-聚丙烯醯胺膠體電泳法(SDS-polyacrylamide
gel electrophoresis) ………………………………… 29

西方墨點法(Western blotting) …………………… 30
即時定量聚合酶連鎖反應(Real-time PCR) ……… 31
生長曲線(Growth curve) ………………………… 32
細胞移行分析(Chemotaxis assay) ………………… 32
細胞週期的分析(Cell cycle analysis) …………… 33
體內試驗(In vivo) ………………………………… 34
結果 …………………………………………………… 35
轉染SK-Hep-1並選殖出穩定且過度表現dlk
蛋白質的細胞株 …………………………………… 35

比較各細胞株脂肪合成酶(FAS)的表現量 …… 39
比較各細胞株的生長型態(Cell morphology) …… 40
生長曲線分析 ……………………………………… 41
細胞週期分析 ……………………………………… 41
細胞移行分析 ……………………………………… 42
體內試驗 …………………………………………… 43
以西方墨點法再次確認各細胞株所攜帶
的基因 ……………………………………………… 43

討論 …………………………………………………… 45
參考文獻 ……………………………………………… 48
圖表 …………………………………………………… 52
圖1. dlk蛋白質的構造 …………………………… 52
圖2. 不同的人類肝癌細胞其dlk基因表現有
明顯差別 …………………………………………… 53

圖3. 以Western blot鑑定攜帶dlk或GFP
基因的細胞株 ……………………………………… 54

圖4. 以real-time PCR確認攜帶dlk細胞外
基因的細胞株 ……………………………………… 55

圖5. 以Western blot比較各細胞株的脂肪
合成酶(FAS)表現量 ……………………………… 56

圖6. 各細胞株的細胞型態 ……………………… 57
圖7. 細胞株GFP(1)與GFP(2)在螢光顯微鏡下
所呈現的綠螢光情形 ……………………………… 58

圖8. 細胞株在不含血清的環境下所呈現之
生長曲線 …………………………………………… 59

圖9. 細胞株在含10﹪血清的環境下所呈現
之生長曲線 ……………………………………… 60

圖10. 細胞在無血清狀態下培養24小時,
之後利用流式細胞儀分析其細胞週期 …………… 61

圖11. 細胞在無血清狀態下培養24小時,
之後利用流式細胞儀分析其細胞週期 …………… 62

圖12. 細胞在無血清狀態下培養48小時,
之後利用流式細胞儀分析其細胞週期 …………… 63

圖13. 細胞在10﹪血清狀態下培養24小時,
之後利用流式細胞儀分析其細胞週期 …………… 64

圖14. 細胞在10﹪血清狀態下培養48小時,
之後利用流式細胞儀分析其細胞週期 …………… 65

圖15. SK-Hep-1, EC(1), EC(5)與Dlk(3)等
細胞株在通過濾膜後被染色的情形 ……………… 66

圖16. 細胞株移行(migration)能力的比較 ……… 67

圖17. 細胞株填補空隙(gap)能力的比較 ………… 68
圖18. 各細胞株在SCID mice體內引發腫瘤
生長的情形 ………………………………………… 69

圖19. 以Western blot再次確認各細胞株所
表現的蛋白質 ……………………………………… 70

附圖 …………………………………………………… 71
載體phCMV3的圖譜 ……………………………… 71
參考文獻 References
參考文獻

Alexander WS. Cytokines in hematopoiesis. Int Rev Immunol. 1998;16:651-82.

Baladron V, Ruiz-Hidalgo MJ, Bonvini E, Gubina E, Notario V, Laborda J. The EGF-like homeotic protein dlk affects cell growth and interacts with growth-modulating molecules in the yeast two-hybrid system. Biochem Biophys Res Commun. 2002;291(2):193-204.

Cooper MJ, Hutchins GM, Cohen PS, Helman LJ, Mennie RJ, Israel MA. Human neuroblastoma tumor cell lines correspond to the arrested differentiation of chromaffin adrenal medullary neuroblasts. Cell Growth Differ. 1990;1(4):149-59.

Deryugina EI, Muller-Sieburg CE. Stromal cells in long-term cultures: keys to the elucidation of hematopoietic development? Crit Rev Immunol. 1993;13(2):115-50.

Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol. 1977;91(3):335-44.

Fay TN, Jacobs I, Teisner B, Poulsen O, Chapman MG, Stabile I, Bohn H, Westergaard JG, Grudzinskas JG. Two fetal antigens (FA-1 and FA-2) and endometrial proteins (PP12 and PP14) isolated from amniotic fluid; preliminary observations in fetal and maternal tissues. Eur J Obstet Gynecol Reprod Biol. 1988;29(1):73-85.

Fleming RJ. Structural conservation of Notch receptors and ligands. Semin Cell Dev Biol. 1998;9(6):599-607.

Gimble JM, Robinson CE, Wu X, Kelly KA. The function of adipocytes in the bone marrow stroma: an update. Bone. 1996;19(5):421-8.

Gimble JM, Robinson CE, Wu X, Kelly KA, Rodriguez BR, Kliewer SA, Lehmann JM, Morris DC. Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol. 1996;50(5):1087-94.


Halder SK, Takemori H, Hatano O, Nonaka Y, Wada A, Okamoto M. Cloning of a membrane-spanning protein with epidermal growth factor-like repeat motifs from adrenal glomerulosa cells. Endocrinology. 1998;139(7):3316-28.

Helman LJ, Thiele CJ, Linehan WM, Nelkin BD, Baylin SB, Israel MA. Molecular markers of neuroendocrine development and evidence of environmental regulation. Proc Natl Acad Sci U S A. 1987;84(8):2336-9.

Helman LJ, Sack N, Plon SE, Israel MA. The sequence of an adrenal specific human cDNA, pG2. Nucleic Acids Res. 1990;18(3):685.

Huang CC, Chuang JH, Huang LL, Chou MH, Wu CL, Chen CM, Hsieh CS, Lee SY, Chen CL. The human Delta-like 1 homologue is implicated in the progression of liver fibrosis in biliary atresia. J Pathol. 2004;202(2):172-9.

Jensen CH, Teisner B, Hojrup P, Rasmussen HB, Madsen OD, Nielsen B, Skjodt K. Studies on the isolation, structural analysis and tissue localization of fetal antigen 1 and its relation to a human adrenal-specific cDNA, pG2. Hum Reprod. 1993;8(4):635-41.

Jensen CH, Krogh TN, Hojrup P, Clausen PP, Skjodt K, Larsson LI, Enghild JJ, Teisner B. Protein structure of fetal antigen 1 (FA1). A novel circulating human epidermal-growth-factor-like protein expressed in neuroendocrine tumors and its relation to the gene products of dlk and pG2. Eur J Biochem. 1994;225(1):83-92.

Kincade PW, Oritani K, Zheng Z, Borghesi L, Smithson G, Yamashita Y. Cell interaction molecules utilized in bone marrow. Cell Adhes Commun. 1998;6(2-3):211-5.

Kodama H, Sudo H, Koyama H, Kasai S, Yamamoto S. In vitro hemopoiesis within a microenvironment created by MC3T3-G2/PA6 preadipocytes. J Cell Physiol. 1984;118(3):233-40.

Laborda J, Sausville EA, Hoffman T, Notario V. dlk, a putative mammalian homeotic gene differentially expressed in small cell lung carcinoma and neuroendocrine tumor cell line. J Biol Chem. 1993;268(6):3817-20.


Laborda J. The role of the epidermal growth factor-like protein dlk in cell differentiation. Histol Histopathol. 2000;15(1):119-29.

Larsen JB, Jensen CH, Schroder HD, Teisner B, Bjerre P, Hagen C. Fetal antigen 1 and growth hormone in pituitary somatotroph cells. Lancet. 1996;347(8995):191.

Lee YL, Helman L, Hoffman T, Laborda J. dlk, pG2 and Pref-1 mRNAs encode similar proteins belonging to the EGF-like superfamily. Identification of polymorphic variants of this RNA. Biochim Biophys Acta. 1995;1261(2):223-32.

Lee K, Villena JA, Moon YS, Kim KH, Lee S, Kang C, Sul HS. Inhibition of adipogenesis and development of glucose intolerance by soluble preadipocyte factor-1 (Pref-1). J Clin Invest. 2003;111(4):453-61.

Lindsell CE, Boulter J, diSibio G, Gossler A, Weinmaster G. Expression patterns of Jagged, Delta1, Notch1, Notch2, and Notch3 genes identify ligand-receptor pairs that may function in neural development. Mol Cell Neurosci. 1996;8(1):14-27.

Maruyama,K., Nishijima,S., Kuromitsu,S., Ichikawa,A., Masuda,E.,
Takemoto,T., Kodama,H. and Kawashima,H. Differential cloning of a gene encoding SCP-1,a transmembrane protein containing EGF-like repeats from mouse stromal cell line PA6. 1993 Unpublished.

Mei B, Zhao L, Chen L, Sul HS. Only the large soluble form of preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, inhibits adipocyte differentiation: role of alternative splicing. Biochem J. 2002;364(Pt 1):137-44.

Moore KA, Pytowski B, Witte L, Hicklin D, Lemischka IR. Hematopoietic activity of a stromal cell transmembrane protein containing epidermal growth factor-like repeat motifs. Proc Natl Acad Sci U S A. 1997;94(8):4011-6.

Moon YS, Smas CM, Lee K, Villena JA, Kim KH, Yun EJ, Sul HS. Mice lacking paternally expressed Pref-1/Dlk1 display growth retardation and accelerated adiposity. Mol Cell Biol. 2002;22(15):5585-92.

Sebastiani V, Visca P, Botti C, Santeusanio G, Galati GM, Piccini V, Capezzone de Joannon B, Di Tondo U, Alo PL. Fatty acid synthase is a marker of increased risk of recurrence in endometrial carcinoma. Gynecol Oncol. 2004;92(1):101-5.

Shimizu K, Chiba S, Saito T, Kumano K, Hirai H. Physical interaction of Delta1, Jagged1, and Jagged2 with Notch1 and Notch3 receptors. Biochem Biophys Res Commun. 2000;276(1):385-9.

Smas CM, Sul HS. Pref-1, a protein containing EGF-like repeats, inhibits adipocyte differentiation. Cell. 1993;73(4):725-34.

Smas CM, Chen L, Sul HS. Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol Cell Biol. 1997;17(2):977-88.

Tornehave D, Jansen P, Teisner B, Rasmussen HB, Chemnitz J, Moscoso G. Fetal antigen 1 (FA1) in the human pancreas: cell type expression, topological and quantitative variations during development. Anat Embryol (Berl). 1993;187(4):335-41.

Van Limpt VA, Chan A, Caron H, Sluis PV, Boon K, Hermus MC, Versteeg R. SAGE analysis of neuroblastoma reveals a high expression of the human homologue of the Drosophila Delta gene. Med Pediatr Oncol. 2000;35(6):554-8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code