Responsive image
博碩士論文 etd-0904108-164845 詳細資訊
Title page for etd-0904108-164845
論文名稱
Title
利用 RNAi 技術抑制 High mobility group box-1 (HMGB-1) 以改善敗血症所引起之發炎反應
Suppression of High Mobility Group Box-1 (HMGB-1) by RNAi Might Alter the Inflammatory Response During Sepsis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
46
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-29
繳交日期
Date of Submission
2008-09-04
關鍵字
Keywords
細胞激素、敗血症
RNA interference (RNAi), sepsis, cytokine, High mobility group box 1 (HMGB1)
統計
Statistics
本論文已被瀏覽 5678 次,被下載 1782
The thesis/dissertation has been browsed 5678 times, has been downloaded 1782 times.
中文摘要
High mobility group box 1 (HMGB1) protein是non-histone chromosomal proteins的一種。它可維持nucleosome的結構、調控基因轉錄作用及活化DNA重組、修復與複製的功能。最近的研究指出HMGB1具有細胞激素的作用,可以引發發炎反應,並且會在敗血症的晚期被發現。HMGB-1是經由被活化的巨噬細胞所釋放,可誘導其他前發炎物質的產生,當HMGB-1過量表現時會造成細胞的死亡。本研究的目的是要觀察HMGB-1在敗血症中的表現,進一步利用RNAi的方法抑制HMGB-1來觀察它對於敗血症的影響,以細胞培養方式利用脂多醣(LPS)刺激RAW264.7 細胞釋放HMGB-1並造成敗血症反應,HMGB-1在培養液中的濃度,用西方墨點法偵測,其他發炎相關物質 (如:TNF-α, TGF-β, 及IL-6)則用ELISA分析。本研究發現,透過RNAi去阻斷受LPS刺激的RAW 264.7 細胞所產生的HMGB-1,可以降低LPS所造成的發炎反應。在巨噬細胞的發炎反應中HMGB-1扮演調控發炎因子的角色。
Abstract
High mobility group box 1 (HMGB-1) protein is a non-histone chromosomal protein. As a DNA binding protein, HMGB-1 is involved in the maintenance of nucleosome structure, regulation of gene transcription and it is active in DNA recombination and repair. It has been known that HMGB-1 is a late mediator of endotoxemia and sepsis. HMGB-1 is released from activated macrophages, induces the release of other proinflammatory mediators, and mediates cell death when overexpressed.
We speculated that the course of sepsis maybe different without the involvement of HMGB-1. The aims of this study are to investigate the role of HMGB-1 in mediating sepsis and to observe the effects by using RNAi to affect the production of HMGB-1. Lipopolysaccharide (LPS) was used to simulate sepsis in culture as well as stimulate the release of HMGB-1 from RAW 264.7 cells. Levels of HMGB-1 in the culture medium were subsequently measured by Western blot. Other proinflammatory cytokines (TNF-α, IL-6 and TGF-β) were measured by ELISA. HMGB-1 could not be detected in the culture medium in the absence of LPS stimuli, but after 0.5 μg/ml LPS treatment HMGB-1 release could be detected. HMGB-1 the amount of released from LPS activated RAW 264.7 cells was in a time- and dose-dependent manner. The present study demonstrated that RNAi in the treatment of LPS-stimulated RAW264.7 cells resulted in the blockade of HMGB-1 and decreased LPS-induced inflammatory response. The results demonstrated that HMGB-1 plays a pivotal role in macrophage inflammatory responses by modulating the production of inflammatory mediators.
目次 Table of Contents
Contents……………………………………………………...1
Abbreviations………………………………………………..2
Abstract in Chinese………………………………………….3
Abstract in English…………………………………………..4
Introduction…………………………………………………..5
Materials and Methods……………………………………..11
Results……………………………………………..…..…….15
Discussion……………………………………………....……17
Figures……………………………………………………….29
References………………………………………...…………33
Appendix…………………………………………………….45
參考文獻 References
[1] Goodwin GH, Sanders C, Johns EW. A new group of
chromatin-associated proteins with a high content of acidic and basic
amino acids. Eur J Biochem. 1973; 38: 14–9.
[2] Bustin M. Regulation of DNA-dependent activities by the functional
motifs of the high mobility group chromosomal proteins. Mol Cell
Biol. 1999; 19: 5237–46.
[3] Bianchi ME, Beltrame M. Upwardly mobile proteins. The role of
HMG proteins in chromatin structure, gene expression and
neoplasia. EMBO Rep. 2000; 1: 109–19.
[4] Bustin M. Revised nomenclature for high mobility group (HMG)
chromosomal proteins. Trends Biochem Sci. 2001; 26: 152–3.
[5] Read CM, Cary PD, Crane-Robinson C, Driscoll PC, Norman DG.
Solution structure of a DNA-binding domain from HMG1. Nucleic
Acids Res. 1993; 21: 3427–36.
[6] Weir HM, Kraulis PJ, Hill CS, Raine ARC, Laue ED, Thomas JO.
Structure of the HMG box motif in the B-domain of HMG1. EMBO J.
1993; 12: 1311–9.
[7] Hardaman CH, Broadhurst RW, Rain ARC, Grasser KD, Thomas JO,
Laue ED. Structure of the A-domain of HMG1 and its interaction
with DNA as studied by heteronuclear three and four dimensional
NMR spectroscopy. Biochemistry. 1995; 34: 16596–607.
[8] Walker JM, Gooderham K, Hastings JR, Mayes E, Johns EW. The
primary structures of non-histone chromosomal proteins HMG1 and
2. FEBS Lett. 1980; 122: 264–70.
[9] Yotov WV, St-Arnaud R. Nucleotide sequence of a mouse cDNA
encoding the non-histone chromosomal high mobility group protein-1
(HMG1). Nucleic Acids Res. 1992; 20: 3516.
[10] Bustin M, Lehn DA, Landsman D. Structural features of the HMG
chromosomal proteins and their genes. Biochim Biophys Acta.
1990; 1049: 231–43.
[11] Mosevitsky MI, Novitskaya VA, Iogannsen MG, Zabezhinsky MA.
Tissue specificity of nucleo-cytoplasmic distribution of HMG1 and
HMG2 proteins and their probable functions. Eur J Biochem.
1989; 185: 303–10.
[12] Bustin M. Regulation of DNA-dependent activities by the functional
motifs of the high mobility group chromosomal proteins. Mol Cell
Biol. 1999; 19: 5237–46.
[13] Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, Tracey KJ. HMG-1 as a late mediator of endotoxin lethality in mice. Science. 1999; 285: 248-51.
[14] Czura CJ, Tracey KJ. Targeting high mobility group box 1 as a late-acting mediator of inflammation. Crit Care Med. 2003; 31: S46-50.
[15] Yang H, Wang H, Czura CJ, Tracey KJ. HMGB1 as a cytokine and therapeutic target. J Endotoxin Res. 2002; 8: 469-72.
[16] Andersson U, Erlandsson-Harris H, Yang H, Tracey KJ. HMGB1 as a DNA-binding cytokine. J Leukoc Biol. 2002; 72: 1084-91.
[17] Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein
HMGB1 by necrotic cell triggers inflammation. Nature.
2002;418:191–5.
[18] Wang H, Yang H, Czura CJ, Sama AE, Tracey KJ. HMGB1 as a late
mediator of lethal systemic inflammation. Am J Respir Crit Care
Med. 2001; 164: 1768–73.
[19] Degryse B, Bonaldi T, Scaffidi P, Muller S, Resnati M, Sanvito F,
Arrigoni G, Bianchi ME. The high mobility (HMG) boxes of nuclear
protein HMG1 induce chemotaxis and cytoskeleton reorganization
in rat smooth muscle cells. J Cell Biol. 2001; 152: 1197–206.
[20] Taniguchi N, Kawahara K, Yone K, Hashiguchi T, Yamakuchi M,
Goto M, Inoue K, Yamada S, Ijiri K, Matsunaga S, Nakajima T,
Komiya S, Maruyama I. High mobility group box chromosomal
protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a
novel cytokine. Arthritis Rheum. 2003; 48: 971–81.
[21] Stern D, Yan SD, Yan SF, Schmidt AM. Receptor for advanced
glycation endproducts: a multiligand receptor magnifying cell stress
in diverse pathologic settings. Adv Drug Deliv Rev. 2002; 54: 1615–
25.
[22] Yu M, Li JH, Yang LH, Obar R, Newman W, Mason J, Golenbock
DT, Latz E, Wang H, Czura CJ, Fenton MJ, Tracey KJ, Yang H.
HMGB1 signals through Toll-like receptor 2. Shock. 2004; 21: 40.
[23] Park JS, Svetkauskaite D, He Q, Kim JY, Strassheim D, Ishizaka A,
Abraham E. Involvement of TLR2 and TRL4 in cellular activation
by high mobility group box 1 protein (HMGB1). J Biol Chem.
2004; 279: 7370–7.
[24] Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O,
Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H,
Tracey KJ. High mobility group 1 protein (HMG1) stimulates
proinflammatory cytokine synthesis in human monocytes. J Exp
Med. 2000; 192: 565–70.
[25] Czura CJ, Yang H, Amella CA, Tracey KJ. HMGB1 in the
immunology of sepsis (not septic shock) and arthritis. Adv Immunol.
2004;84:181–200.
[26] Dinarello CA. The interleukin-1 family: 10 years of discovery.
FASEB J. 1994; 8: 1314–1325.
[27] Dinarello CA. Therapeutic strategies to reduce IL-1 activity in
treating local and systemic inflammation. Curr Opin Pharmacol.
2004; 4: 378–385.
[28] Tracey, K. J. Fatal Sequence: The Killer Within. Dana Press.2005
[29] Angus D, Wax RS. Epidemiology of sepsis: an update. Crit Care
Med. 2001; 29: S109–16.
[30] Tracey KJ, Lowry SF. The role of cytokine mediators in septic
shock. Adv Surg. 1990; 23: 21–56.
[31] Tracey KJ, Fong Y, Hesse DG, Manogue KR, Lee AT, Kuo GC,
Lowry SF, Cerami A. Anti-cachectin/TNF monoclonal antibodies
prevent septic shock during lethal bacteraemia. Nature. 1987; 330:
662–664.
[32] Abraham E, Wunderink R, Silverman H, Perl TM, Nasraway S,
Levy H, Bone R, Wenzel RP, Balk R, Allred R. Efficacy and safety
of monoclonal antibody to human tumor necrosis factor in patients
with sepsis syndrome. JAMA. 1995; 273: 934–941.
[33] Pruitt JH, Copeland III EM, Moldawer LL. Interleukin-1 and
interleukin-1 antagonism in sepsis, systemic inflammatory response
syndrome, and septic shock. Shock. 1995; 3: 235–251.
[34] Yang H, Ochani M, Li JH, Qiang X, Tanovic M, Harris HE, Susarla
SM, Ulloa L, Wang H, DiRaimo R, Czura CJ, Wang H, Roth J,
Warren HS, Fink MP, Fenton MJ, Andersson U, Tracey KJ.
Reversing established sepsis with antagonists of endogenous
HMGB1. Proc Natl Acad Sci USA. 2004; 101: 296–301.
[35] Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ. Cutting
edge: HMG-1 as a mediator of acute lung inflammation. J Immunol.
2000; 165: 2950–2954.
[36] Kim JY, Park JS, Strassheim D, Douglas I, Diaz del Valle F,
Asehnoune K, Mitra S, Kwak SH, Yamada S, Maruyama I,
Ishizaka A, Abraham E. HMGB-1 contributes to the development of
acute lung injury after hemorrhage. Am J Physiol Lung Cell Mol
Physiol. 2005; 288: L958–L965.
[37] Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL, Fink MP.
HMGB-1 B box increases the permeability of Caco-2 enterocytic
monolayers and impairs intestinal barrier function in mice.
Gastroenterology. 2002; 123: 790–802.
[38] Ulloa L, Tracey KJ. The ‘‘cytokine profile’’: a code for sepsis.
Trends Mol Med. 2005; 11: 56–63.
[39] Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed
Y, Metz C, Miller EJ, Tracey KJ, Ulloa L. Cholinergic agonists
inhibit HMGB-1 release and improve survival in experimental
sepsis. Nat Med. 2004; 10: 1216–1221.
[40] Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, Yang R, Czura
CJ, Fink MP, Tracey KJ. Ethyl pyruvate prevents lethality in mice
with established lethal sepsis and systemic inflammation. Proc Natl
Acad Sci USA. 2002; 99: 12351–12356.
[41] Ulloa L, Fink MP, Tracey KJ. Ethyl pyruvate protects against lethal
systemic inflammation by preventing HMGB-1 release. Ann N Y
Acad Sci. 2003; 987: 319–321.
[42] Li J, Wang H, Mason JM, Levine J, Yu M, Ulloa L, Czura CJ,
Tracey KJ, Yang H. Recombinant HMGB-1 with
cytokine-stimulating activity. J Immunol Method. 2004; 289:
211–223.
[43] Wang H, Yang H, Tracey KJ. Extracellular role of HMGB-1 in
inflammation and sepsis. J Intern Med. 2004; 255: 320–331.
[44] Riedemann NC, Guo RF, Ward PA. Novel strategies for the
treatment of sepsis. Med. 2003; 9: 517–524.
[45] Arcaroli J, Yum HK, Kupfner J, Park JS, Yang KY, Abraham E.
Role of p38 MAP kinase in the development of acute lung injury.
Clin Immunol. 2001; 101: 211–9.
[46] Wang H, Vishnubhakat JM, Bloom O, Zhang M, Ombrellino M, Sama A, Tracey KJ. Proinflammatory cytokines (tumor necrosis factor and interleukin 1) stimulate release of high mobility group protein-1 by pituicytes. Surgery. 1999; 126: 389–92.
[47] Lutz W, Stetkiewicz J. High mobility group box 1 protein as a late-acting mediator of acute lung inflammation. Int J Occup Med Environ Health. 2004; 17: 245–54.
[48] Kalinina N, Agrotis A, Antropova Y, DiVitto G, Kanellakis P,
Kostolias G, Ilyinskaya O, Tararak E, Bobik A. Increased expression
of the DNA-binding cytokine HMGB1 in human atherosclerotic
lesions: role of activated macrophages and cytokines. Arterioscler
Thromb Vasc Biol. 2004; 24: 2320–5.
[49] Lohmann-Matthes ML, Steinmuller C, Franke-Ullmann G. Pulmonary macrophages. Eur Respir J. 1994; 7: 1678–89.
[50] Peters-Golden M. The alveolar macrophage: the forgotten cell in asthma. Am J Respir Cell Mol Biol. 2004; 31: 3–7.
[51] Kay AB. Immunomodulation in asthma: mechanisms and possible pitfalls. Curr Opin Pharmacol. 2003; 3: 220–6.
[52] Downing JF, Kachel DL, Pasula R, Martin WJ. Gamma interferon stimulates rat alveolar macrophages to kill Pneumocystis carinii by L-arginine- and tumor necrosis factor-dependent mechanisms. Infect Immun. 1999; 67: 1347–52.
[53] Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC.
Potent and specific genetic interference by double-stranded RNA in
Caenorhabditis elegans. Nature. 1998; 391: 806–11.
[54] Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev.
2001; 14: 778.
[55] Yang S, Tutton S, Pierce E, Yoon K. Specific double-stranded RNA
interference in undifferentiated mouse embryonic stem cells. Mol
Cell Biol. 2001; 21:7807.
[56] Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K,
Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA
interference in cultured mammalian cells. Nature. 2001; 411: 494.
[57] Sioud M. Therapeutic siRNAs. Trends Pharmacol Sci. 2004; 25:
22–28.
[58] Hannon GJ, Rossi JJ. Unlocking the potential of the human
genome with RNA interference. Nature. 2004; 431: 371–378.
[59] Ombrellino M, Wang H, Ajemian MS, Talhouk A, Scher LA,
Friedman SG, Tracey KJ. Increased serum concentrations of
high-mobility-group protein 1 in hemorrhagic shock. Lancet.
1999; 354: 1446–7.
[60] Kokkola R, Sundberg E, Ulfgren AK, Palmblad K, Li J, Wang H,
Ulloa L, Yang H, Yan XJ, Furie R, Chiorazzi N, Tracey KJ,
Andersson U, Harris HE. High mobility group box chromosomal
protein 1: a novel proinflammatory mediator in synovitis. Arthritis
Rheum. 2002; 46: 2598–603.
[61] Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A,
Rubartelli A, Agresti A, Bianchi ME. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 2003; 22: 5551–5560.
[62] Bustin M. At the crossroads of necrosis and apoptosis, signaling to
multiple cellular targets by HMGB1. Sci STKE. 2002; 151: PE39.
[63] Li J, Kokkola R, Tabibzadeh S, Yang R, Ochani M, Qiang X, Harris HE, Czura CJ, Wang H, Ulloa L, Wang H, Warren HS, Moldawer LL, Fink MP, Andersson U, Tracey KJ, Yang H. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med. 2003; 9: 37–45.
[64] Ombrellino M, Wang H, Ajemian MS, Talhouk A, Scher LA,
Friedman SG, Tracey KJ. Increased serum concentrations of
high-mobility-group protein 1 in haemorrhagic shock. Lancet. 1999; 354: 1446–1447.
[65] Tang D, Shi Y, Jang L, Wang K, Xiao W, Xiao X. Heat shock
response inhibits release of high mobility group box 1 protein
induced by endotoxin in murine macrophages. Shock. 2005; 23:
434–40.
[66] Dinarello CA. Biologic basis for interleukin-1 in disease. Blood.
1996; 87: 2095–147.
[67] Dinarello CA, Cannon JG, Wolff SM, Bernheim HA, Beutler B,
Cerami A, Figari IS, Palladino MA Jr, O'Connor JV. Tumor necrosis
factor (cachectin) is an endogenous pyrogen and induces production
of interleukin 1. J Exp Med. 1986; 163: 1433–50.
[68] Fong Y, Tracey KJ, Moldawer LL, Hesse DG, Manogue KB,
Kenney JS, Lee AT, Kuo GC, Allison AC, Lowry SF. Antibodies to
cachectin/tumor necrosis factor reduce interleukin 1 beta and
interleukin 6 appearance during lethal bacteraemia. J Exp Med. 1989; 170: 1627–33.
[69] Berg DJ, Kuhn R, Rajewsky K, Muller W, Menon S, Davidson N,
Grünig G, Rennick D. Interleukin-10 is a central regulator of the
response to LPS in murine models of endotoxic shock and the
Shwartzman reaction but not endotoxin tolerance. J Clin Invest.
1995; 96: 2339–47.
[70] Brunetti M, Colasante A, Mascetra N, Piantelli M, Musiani P,
Aiello FB. IL-10 synergizes with dexamethasone in inhibiting
human T cell proliferation. J Pharmacol Exp Ther. 1998; 285:
915–9.
[71] Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM.
Transforming growth factor beta from multiple myeloma cells
inhibits proliferation and IL-2 responsiveness in T lymphocytes. J
Leukoc Biol. 1999; 66: 981–8.
[72] Feinberg MW, Jain MK. Role of transforming growth factor-beta1/
Smads in regulating vascular inflammation and atherogenesis.
Panminerva Med. 2005; 47: 169–86.
[73] Kriegel MA, Li MO, Sanjabi S, Wan YY, Flavell RA.
Transforming growth factor-beta: recent advances on its role in
immune tolerance. Curr Rheumatol Rep. 2006; 8: 138–44.
[74] Schmidt-Weber CB, Blaser K. The role of TGF-beta in allergic
inflammation. Immunol Allergy Clin North Am. 2006; 26: 233–44.
[75] Reidy MF, Wright JR. Surfactant protein A enhances apoptotic
cell uptake and TGF-beta1 release by inflammatory alveolar
macrophages. Am J Physiol Lung Cell Mol Physiol. 2003; 285:
L854–L861.
[76] Lang CH, Silvis C, Deshpande N, Nystrom G, Frost RA. Endotoxin
stimulates in vivo expression of inflammatory cytokines tumor
necrosis factor α,interleukin 1β, -6, and high-mobility group protein-1 in skeletal muscle. Shock. 2003; 19: 538–546.
[77] Fang WH, Yao YM, Shi ZG, Yu Y, Wu Y, Lu LR, Sheng ZY. The significance of changes in high-mobility group-1 protein mRNA expression in rats after thermal injury. Shock. 2002; 17: 329–333.
[78] Yang H, Wang H, Tracey KJ. HMG-1 rediscovered as a cytokine.
Shock. 2001; 15: 247–253.
[79] Landsman D, Bustin M. A signature for the HMG-1 box
DNA-binding proteins. Bioessays. 1993; 15: 539–546.
[80] Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, Rubartelli A. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 2002; 3: 995–1001.
[81] Kariko K, Bhuyan P, Capodici J, Weissman D. Small interfering
RNAs mediate sequence-independent gene suppression and induce
immune activation by signaling through Toll-like receptor 3. J
Immunol. 2004; 172: 6545–6549.
[82] Sioud M. Induction of inflammatory cytokines and interferon
responses by double-stranded and single-stranded siRNAs is
sequence-dependent and requires endosomal localization. J Mol
Biol. 2005; 348: 1079–1090.
[83] Reynolds A, Anderson EM, Vermeulen A, Fedorov Y, Robinson K,
Leake D, Karpilow J, Marshall WS, Khvorova A. Induction of the
interferon response by siRNA is cell type- and duplex
length-dependent. RNA. 2006; 12: 988-93.
[84] Kokkola R, Sundberg E, Ulfgren AK, Palmblad K, Li J, Wang H,
Ulloa L, Yang H, Yan XJ, Furie R, Chiorazzi N, Tracey KJ,
Andersson U, Harris HE. High mobility group box chromosomal
protein 1: a novel proinflammatory mediator in synovitis. Arthritis
Rheum. 2002; 46: 2598–2603.
[85] Ulloa L, Batliwalla FM, Andersson U, Gregersen PK, Tracey KJ.
High mobility group box chromosomal protein 1 as a nuclear
protein, cytokine, and potential therapeutic target in arthritis.
Arthritis Rheum. 2003; 48: 876–881.
[86] Kokkola R, Li J, Sundberg E, Aveberger AC, Palmblad K, Yang H,
Tracey KJ, Andersson U, Harris HE. Successful treatment of
collagen-induced arthritis in mice and rats by targeting extracellular
high mobility group box chromosomal protein 1 activity. Arthritis
Rheum. 2003; 48: 2052–2058.
[87] Dinarello CA. Proinflammatory and anti-inflammatory cytokines
as mediators in the pathogenesis of septic shock. Chest. 1997; 112:
321–9.
[88] Scholz H. Fever. Am J Physiol Regul Integr Comp Physiol. 2003;
284: 913–5.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code