Responsive image
博碩士論文 etd-0904109-195554 詳細資訊
Title page for etd-0904109-195554
論文名稱
Title
亞洲沙塵同位素特徵及傳輸過程之物化特性消長變化趨勢分析
Isotopic Characteristics of Asian Dusts and Their Physicochemical Succession of Long-Range Transport
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
204
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-05
繳交日期
Date of Submission
2009-09-04
關鍵字
Keywords
DMR相關性檢定分析、逆軌跡分析、物化特徵消長解析、同位素特徵、沙源區、亞洲沙塵暴
Asian Continental Sandstorm (ACS), Isotopic Properties, Source Regions, Physicochemical Characteristics Succession, Backward Trajectory, DMR Test
統計
Statistics
本論文已被瀏覽 5653 次,被下載 2243
The thesis/dissertation has been browsed 5653 times, has been downloaded 2243 times.
中文摘要
本研究於2008年2月22日至3月6日發生大型亞洲沙塵暴期間,於澎湖小門測站進行沙塵暴之密集採樣,特別於沙塵暴期間,以兩台雙粒徑分道採樣器(dichotomous sampler)每隔四小時進行一次懸浮微粒採樣,並分析其物理化學特徵,分析項目包括質量濃度、粒徑分佈、水溶性離子成份、金屬元素成份及碳成份,詳細探討沙塵暴的進程中,人為及自然源污染物之消長變化趨勢。研究結果發現,沙塵暴來臨前至來臨前24小時主要以細微粒為主,其化學成份主要以SO42-、NH4+、NO3-、Zn、Mn及OC等人為污染物增加為主;沙塵暴來臨時粗微粒大幅增加,其化學成份主要以Cl-、Na+、Ca2+、Mg2+、Ca、Al、Mg及EC等地殼/海洋物質為主,沙塵暴來臨後,所有物種濃度均明顯降低,其中Cl-、Na+等海鹽物質之比重增加,顯示海水飛沫穩定之貢獻。
除沙塵懸浮微粒之物化特徵分析外,本研究亦以HYSPLIT MODEL繪製沙塵暴期間之逆軌跡圖(backward trajectory),嘗試探討本次沙塵暴之發源地,由逆軌跡結果推論,本次沙塵暴源自內蒙古東區渾善達克沙地或科爾沁沙地的機率較高。
此外,本研究團隊於2005年9月期間,在內蒙古自治區之騰格里沙漠、毛烏素沙漠、渾善達克沙地、科爾沁沙地分別採得17個地表土壤樣本,將其攜回實驗室利用風力再懸浮法將沙塵重新懸浮於空氣中,並以雙粒徑分道採樣器採集懸浮微粒樣本。最後,本研究將澎湖所採集之沙塵樣本與再懸浮所採集之沙源地沙塵樣本,利用多接收器感應耦合電漿質譜儀(multiple-collector inductively coupled plasma mass spectrometry,簡稱MC-ICP-MS)進行鍶同位素87Sr/86Sr比值特徵分析,初步建立大陸北方主要沙源地表土再懸浮沙塵之同位素特徵,並應用鄧氏多重全距檢定(Duncan’s Multiple Range Test, DMR)進行下風區域與沙塵源地懸浮微粒之同位素特徵相關性研究,研判本次沙塵暴源自東區渾善達克沙地或科爾沁沙地的機率最高,此結果與逆軌跡模式所繪製之傳輸路徑具有相當程度的一致性。
Abstract
ABSTRACT
In this study, we conducted an intensive sampling of Asian dusts at Pescadores Islands for heavy Asian continental sandstorms (ACS) from February 22 to March 6, 2008. To investigate the succession of anthropogenic and natural pollutants for the ACS transportation, PM2.5 and PM2.5-10 were sampled by two dichotomous samplers once every four hours during the ACS periods, and furthermore analyzed their physicochemical properties, including mass concentrations, particle size distribution, water-soluble ionic species, carbonaceous contents, and metallic contents. Experimental results indicated that it was mainly fine particles (PM2.5) prior to the ACS, and the percentage of anthropogenic species (i.e., SO42-, NH4+, NO3-, Zn, Mn and OC) increased dramatically. However, it changed to coarse particles while the ACS overwhelming, and the percentage of crustal/marine species (i.e., Cl-, Na+, Ca2+, Mg2+, Ca, Al, Mg and EC) increased. After the ACS, the concentrations of all species decreased substantially. However, the percentage of Cl- and Na+ increased, suggesting that sea breeze has constant influences on local suspended particles.
In addition to the analysis of physicochemical properties of Asian dusts, this study applied a HYSPLIT MODEL to figure out the transportation routes and the source regions of the ACS. Backward trajectory analysis showed that the ACS was originated from the east portion of Inner Mongolia, namely the Onqin Daga Sandy Land and the Horqin Sandy Land.
Moreover, seventeen soil samples were collected from the Tengger Desert, the Mu Us Desert, the Onqin Daga Sandy Land, and the Horqin Sandy Land in Inner Mongolia during the year of 2005. The soil samples were resuspended in a resuspension chamber and then collected by a dichotomous sampler. This study focused on PM2.5-10 particles that mainly influence the downwind regions, and then took the ACS samples and the resuspended soil samples to measure the Sr isotopic characteristics of 87Sr/86Sr ratios by a multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). To characterize the isotopic properties of resuspended dust particles from the ACS source regions in northern China, and to correlate Asian dusts at the downwind regions of ACS with the source regions by Duncan’s Multiple Range Test (DMR). The DMR results showed that the ACS was probably originated from the east portion of Inner Mongolia, namely the Onqin Daga Sandy Land and the Horqin Sandy Land, which concurred with the backward trajectory analysis.
目次 Table of Contents
中文摘要…………………………………………………………….. I
英文摘要…………………………………………………………….. Ⅲ
目錄………………………………………………………….………. Ⅴ
表目錄……………………………………………………….………. IX

圖目錄……………………………………………………………….. XI

第一章 前言………………………………………………………… 1-1
1.1 研究背景……………………………………………….…. 1-1
1.2 研究目的……………………………………………….…. 1-2
1.3 研究架構與流程………………………………………….. 1-3
第二章 文獻回顧…………………………………………………… 2-1
2.1 懸浮微粒基本特性……………………………………….. 2-1
2.1.1 懸浮微粒來源及粒徑分佈………………………… 2-2
2.1.2 懸浮微粒形成機制………………………………… 2-6
2.1.3 懸浮微粒化學特性………………………………… 2-7
2.1.3.1 水溶性離子成份…………………………... 2-7
2.1.3.2 金屬元素成份……………………………... 2-9
2.1.3.3 碳成份……………………………………... 2-12
2.2 亞洲沙塵暴之特性……………………………………….. 2-13
2.2.1 沙塵暴定義及分類………………………………… 2-13
2.2.2 沙塵暴成因………………………………………… 2-15
2.2.3 沙塵暴影響範圍及危害…………………………… 2-18
2.3 沙塵暴傳輸現象………………………………………….. 2-21
2.3.1 沙塵暴之傳輸路徑………………………………… 2-22
2.3.2 沙塵暴傳輸過程之消長變化……………………… 2-26
2.4 亞洲沙塵之源解析……………………………………….. 2-29
2.4.1 源解析技術的發展與應用………………………… 2-29
2.4.2 沙源地表土物化指紋特徵………………………… 2-36
2.4.3 地球科學同位素示蹤技術………………………… 2-37
2.4.4 鍶同位素源解析的應用…………………………… 2-38
第三章 研究方法…………………………………………………… 3-1
3.1 澎湖地區懸浮微粒密集採樣規劃……………………….. 3-1
3.1.1 沙塵暴事件日背景描述…………………………… 3-1
3.1.2 密集採樣監測地點………………………………… 3-2
3.1.3 密集採樣監測時段………………………………… 3-4
3.1.4 懸浮微粒採樣方法………………………………… 3-4
3.1.4.1 高量採樣器………………………………... 3-4
3.1.4.2 雙粒徑分道採樣器………………………... 3-5
3.1.4.3 微孔均勻沉降衝擊器……………………... 3-8
3.2 內蒙古自治區沙源地採樣規劃………………………….. 3-11
3.2.1 沙源地表土採樣方法……………………………… 3-11
3.2.2 再懸浮沙塵採樣方法……………………………… 3-13
3.3 分析方法………………………………………………….. 3-13
3.3.1 質量濃度分析……………………………………… 3-13
3.3.2 水溶性離子成份分析……………………………… 3-14
3.3.3 金屬元素成份分析………………………………… 3-16
3.3.4 碳成份分析………………………………………… 3-17
3.3.5 同位素特徵分析…………………………………… 3-18
3.4 品保與品管……………………………………………….. 3-24
3.4.1 採樣方法之品保與品管…………………………… 3-24
3.4.1.1 採樣地點選擇……………………………... 3-24
3.4.1.2 濾紙選擇及調理…………………………... 3-24
3.4.1.3 採樣器流量校正…………………………... 3-24
3.4.1.4 採樣程序…………………………………... 3-26
3.4.1.5 採樣濾紙之攜帶與保存…………………... 3-26
3.4.2 分析方法之品保與品管…………………………… 3-27
3.4.2.1 質量濃度分析……………………………... 3-27
3.4.2.2 化學成份分析……………………………... 3-27
3.5 沙源地解析檢定方法…………………………………….. 3-31
3.5.1 逆軌跡分析…………………………………………...
3-31
3.5.2 DMR相關性檢定分析 ……………………………… 3-32
第四章 結果與討論………………………………………………… 4-1
4.1 沙塵暴期間密集採樣懸浮微粒物理成份分析與探討….. 4-1
4.1.1 總懸浮微粒濃度日變化趨勢……………………… 4-1
4.1.2 懸浮微粒粒徑分佈日變化趨勢…………………… 4-2
4.1.3 沙塵暴期間粗細微粒濃度四小時變化趨勢……… 4-3
4.2 沙塵暴期間密集採樣懸浮微粒化學成份分析與探討….. 4-9
4.2.1 水溶性離子成份消長解析………………………… 4-9
4.2.2 金屬元素成份消長解析…………………………… 4-22
4.2.3 碳成份消長解析…………………………………… 4-33
4.2.4 化學成份綜合分析………………………………… 4-40
4.3 沙源地土壤樣本同位素特徵分析……………………….. 4-46
4.3.1 沙源地示蹤元素Sr與主要地殼元素Ca之探討….. 4-46
4.3.2 沙源地Sr同位素組成特徵探討…………………… 4-49
4.4 澎湖地區懸浮微粒樣本同位素特徵分析……………….. 4-52
4.4.1澎湖群島沙塵暴示蹤元素Sr與主要地殼元素Ca之探討………………………………………………. 4-52
4.4.2 澎湖群島沙塵暴Sr同位素特徵探討……………… 4-55
4.5 沙塵暴源解析…………………………………………….. 4-58
4.5.1 以逆軌跡模式判斷沙塵暴之來源及路徑………… 4-58
4.5.2 以Sr同位素特徵進行沙塵暴源解析……………… 4-69
第五章 結論與建議…………………………...……………………. 5-1
5.1結論………………………………………………………... 5-1
5.2建議………………………………………………………... 5-4
參考文獻……………………………………………………………..
R-1
附錄A 2008年亞洲沙塵暴期間澎湖群島質量濃度分..…………...
A-1
附錄B 2008年亞洲沙塵暴期間澎湖群島四小時水溶性離子..…...
B-1
附錄C XXXXXXXXXXXXXXXXXXXXXXXXXXXXX....……..
C-1
附錄D xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.……….. D-1
參考文獻 References
參考文獻
Appel, B.R., Hoffer, E.M., Kothny, E.L., Wall, S.M., Haik, M., and Knights, R.L., “Analysis of carbonaceous material in southern California atmospheric aerosols,” Environmental Science and Technology, Vol. 13, pp. 98-104, 1979.
Ashbough L.L., “A statistical trajectory technique for determining air pollution source regions,” Journal of Air Pollution Control Association, Vol. 33, pp. 1096-1098, 1983.
Banner, J.L., Musgrove, M., Asmerom, Y., Edwards, R.L., and Hoff, J.A. “High-resolution temporal record of Holocene ground-water chemistry: Tracing the link between climate and hydrology,” Geology, Vol. 24, pp. 1049-1053, 1996.
Bar-Mattews, M., Ayalon, A., Kaufman, A., and Wasserburg, G.J., “The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq Cave, Israel,” Earth and Planetary Science Letters, Vol. 166, pp. 85-95, 1999.
Batterman, S.A., “Development of crustal profiles for receptor modeling,” Atmospheric Environment, Vol. 22, pp. 1821-1828, 1988.
Blifford, I.H. and Mceker, G.O., “A factor analysis model of large scale pollution,” Atmospheric Environment, Vol. 1, 1967.
Cadle, S.H. and Mulawa, P.A., “Atmospheric carbonaceous species measurement methods comparison study: general motors result,” Aerosol Science and Technology, Vol. 12, pp. 128-141, 1990.
Cao, J.J., Chow, J.C., and Watson, J.G., “Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau,” Atmospheric Environment, Vol. 42, pp. 2261-2275, 2008a.
Cao, J.J., Zhu, C.S., and Chow, J.C., “Stable carbon and oxygen isotopic composition of carbonate in fugitive dust in the Chinese Loess Plateau,” Atmospheric Environment, Vol. 42, pp. 9118-9122, 2008b.
Chang, Q., Mishima, T., Yabuki, S., Takahashi, Y., and Shimizu, H., “Sr and Nd isotope ratios and REE abundances of moraines in the mountain areas surrounding the Taklimakan Desert, NW China,” Geochemical Journal, Vol. 34, pp. 407-427, 2000.
Chang, S.Y., Fang, G.C., Chou, C.K., and Chen, W.N., “Source identifications of PM10 aerosols depending on hourly measurements of soluble components characterization among different events in Taipei Basin during spring season of 2004,” Chemosphere, Vol. 65, pp. 792-801, 2006.
Chen, T.H., Feng, J.H., Zhang, Y., and Li, H.W., “Components of atmospheric particles in Hefei city and their environmental significance,” Acta Petrologica Et Mineralogica, Vol. 20, No. 4, 2001.
Chen, S.J., Hsieh, L.T., Kao, M.J., Lin, W.Y., Huang, K.L., and Lin, C.C., “Characteristics of particles sampled in southern Taiwan during the Asian dust storm periods in 2000 and 2001,” Atmospheric Environment, Vol. 38, pp. 5925-5934, 2004.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Fujita, E.M., Lowenthal, D.H., Solomon, P.A., Magliano, K.L., Ziman, S.D., and Richards, L.W., “PM10 source apportionment in California's San Joaquin Valley,” Atmospheric Environment, Vol. 26A, pp. 3335-3354, 1992.
Chow, J.C., Watson, J.G., Lu, Z., Lowenthal, D.H., Frazier, C.A., Solomon, P.A., Thuillier, R.H., and Magliano, K., “Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX,” Atmospheric Environment, Vol. 30, pp. 2079-2112, 1996.
Chung, Y.S. and Yoon, M.B., “On the occurrence of yellow sand and atmospheric loadings,” Atmospheric Environment, Vol. 30, pp. 2387-2397, 1996.
De Baar, H.J.W. and Boyd, P.M., “The role of iron in plankton ecology and carbon dioxide transfer of the global oceans,” The changing ocean carbon cycle: A midterm synthesis of the Joint Global Ocean Flux Study, Eds., R.B. Hanson, H.W. Ducklow et al., Cambridge University Press, 2000.
Duce, R.A., Liss, P.S., Merrill, J.T., Atlas, E.L., Buat-Menard, P., Hicks, B.B., Miller, J.M., Prospero, J.M., Arimoto, R., Church, T.M., Ellis, W., Galloway, J.N., Hansen, L., Jickells. T.D., Knap, A.H., Reinhardt, K.H., Schneider, B., Soudine, A., Tokos, J.J., Tsunogai, S., Wollast, R., and Zhou, M., “The atmospheric input of trace species to the world ocean,” Global Biogeochemical Cycles, Vol. 5, pp. 193-259, 1991.
Duncan, D.B., “Multiple range and multiple F test,” Biometrics, Vol. 1, pp. 1-42, 1955.
Fang, S.H. and Chen, H.W., “Air Quality and Pollution Control in Taiwan”, Atmospheric Environment, Vol. 30, pp. 735-741, 1996.
Frumkin, A. and Stein, M., “The Sahara-East Mediterranean dust and climate connection revealed by strontium and uranium isotopes in Jerusalem speleothem,” Earth and Planetary Science Letters, Vol. 217, pp. 451-464, 2004.
Goede, A., McCulloch, M., McDermott, F., and Hawkes-worth, C., “Aeolian contribution to strontium and strontium isotope variations in a Tasmanian speleothem,” Chemical Geology, Vol. 149, pp. 37-50, 1998.
Hai, C.X., “Sampling of soil/sand in the season of spring at North Yin-Shan for various land-use,” personal contact, 2004.
Hering, S., Eldering, A., and Seinfeld, J.H., “Bimodal character of accumulation mode aerosol mass distributions in Southern California,” Atmospheric Environment, Vol.31, pp.1-11, 1997.
Hinds, W.C., “Aerosol technology: properties, behavior, and measurement of airborne particles,” 2nd Edition, John Willey & Sons, Inc., New York, pp.3-4, 1999.
Honda, M. and Shimizu, H., “Geochemical, mineralogical and sedimentological studies on the Taklimakan Desert sands,” Sedimentology, Vol. 45, pp. 1125-1143, 1998.
Honda, M., Yabuki, S., and Shimizu, H., “Geochemical and isotopic studies of aeolian sediments in China,” Sedimentology, Vol. 51, pp. 211-230, 2004.
Huang, Z.E., Roy, M.H., and Yin, J.X., “Size distributions of water-soluble ionic species in atmospheric particles at a coastal site in Ireland during summer,” Marine Environmental Science, Vol. 24, No. 4, 2005.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel, M., Monn, C., and Vonmont, H., “Chemical characterization of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland,” Atmospheric Environment, Vol. 39, pp. 637-651, 2005.
Hwang, H.J., Kim, H.K., and Ro, C.U., “Single-particle characterization of aerosol samples collected before and during an Asian dust storm in Chuncheon, Korea,” Atmospheric Environment, Vol. 42, pp. 8738-8746, 2008.
Ichikuni, M. and Musha, S., “Partition of strontium between gypsum and solution,” Chemical Geology, Vol. 21, pp. 359-363, 1978.
Ishii, T., Isobe, I., and Mizuta, K., “Study of the formation processes and sedimentary environment of surface geological features in desertic areas of China, with special reference to the characteristics and origin of eolian sediments,” Bull. Geol. Surv., Vol. 6, pp. 651-685, 1995.
Jahn, B., Gallet, S., and Han, J.M., “Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: Eolian dust provenance and paleosol evolution during the last 140 ka,” Chemical Geology, Vol. 178, pp. 71-94, 2001.
Jickells, T.D., An, Z.S., Andersen, K.K., Baker, A.R., Bergametti, G., Brooks, N., Cao, J.J., Boyd, P.W., Duce, R.A., Hunter, K.A., Kawahata, H., Kubilay, N., LaRoche, J., Liss, P.S., Mahowald, N., Prospero, J.M., Ridgwell, A.J., Tegen, I., and Torres, R., “Global iron connections between desert dust, ” Ocean Biogeochemistry, and Climate, Science, Vol. 308, pp. 67-71, 2005.
John, W.F., Hoppel, W.A., Frick, G.M., and Larson, R.E., “Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean,” Journal of Geophysical. Research, Vol. 95 (D4), pp. 3659-3664, 1990.
Joseph, P.V., Raipal, D.K., and Deka, S.N., “Andihi, the convective dust storms of Northwest India,” Mausam, Vol. 31, pp. 431-442, 1980.
Kadowaki, S., “Characterization of carbonaceous aerosols in the Nagoya urban area: 1. Elemental and organic carbon concentrations and the origin of organic aerosols,” Environmental Science and Technology, Vol. 24, pp.741-744, 1990.
Kim, Y.P., “Air quality in Northeast Asia with emphasis on China (in Korean,” Journal of Korean Society of Atmospheric Environment, Vol. 15, pp. 211-217, 1999.
Kim, K.W., Kim, Y.J., and Oh, S.J., “Visibility impairment during yellow sand periods in the urban atmosphere,” Atmospheric Environment, Vol. 35, pp. 5157-5167, 2001.
Lee, B.K., Jun, N.Y., and Lee, H.K., “Comparison of particulate matter characteristics before, during, and after Asian dust events in Incheon and Ulsan, Korea,” Atmospheric Environment, Vol. 38, pp. 1535-1545, 2004.
Lee, C.T., Chuang, M.T., Chan, C.C., Cheng, T.J., and Huang, S.L., “Aerosol characteristics from the Taiwan aerosol supersite in the Asian yellow-dust periods of 2002,” Atmospheric Environment, Vol. 40, pp. 3409-3418, 2006.
Liu, C.Q., Masuda, A., Okada, A., Yabuki, S., Zhang, S., and Fan, Z.L., “A geochemical study of loess and desert sand in northern China: Implications for continental crust weathering and composition,” Chemical Geology, Vol. 106, pp. 359-374, 1993.
Liu, C.Q., Masuda, A., Okada, A., Yabuki, S., and Fan, Z.L., “Isotope geochemistry of quaternary deposits from the arid lands in northern China,” Earth and Planetary Science Letters, Vol. 127, pp. 25-38, 1994.
Li, L.Z., Shen, Z.X., and Du, N., “Chemical composition of water-soluble species between haze and normal days over Xi’an,” Journal of the Graduate School of the Chinese Academy of Science, Vol. 24, No. 5, pp. 674-679, 2007.
McMurry, P.H. and Zhang, X.Q., “Size distribution of ambient organic and elemental carbon,” Aerosol Science and Technology, Vol. 10, pp. 430-437, 1989.
Mori, I., Nishikawa, M., Tanimura, T., and Quan, H., “Change in size distribution and chemical composition of kosa (Asian dust) aerosol during long-range transport,” Atmospheric Environment, Vol. 37, pp. 4253-4263, 2003.
Mueller, P.K., Mosly, R.W., and Pierce, L.B., “Chemical composition of Pasadena aerosol by particle size and time of day. IV. carbonate and noncarbonate carbon content,” Journal of Colloid and Interface Science, Vol. 39, pp. 235-239, 1972.
Mukai, H., Tanaka, A., and Fujii, T., “Lead isotope ratios of airborne particulate matter as tracers of long-range transport of air pollutants around Japan,” Journal of Geophysical Research, Vol. 99, pp. 3717-3726, 1994.
Nakano, T., Yokoo, Y., Nishikawa, M., and Koyanagi, H., “Regional Sr–Nd isotopic ratios of soil minerals in northern China as Asian dust fingerprints,” Atmospheric Environment, Vol. 38, pp. 3061-3067, 2004.
Nakano, T., Nishikawa, M., Mori, I., and Shin, K. “Source and evolution of the ‘‘perfect Asian dust storm’’ in early April 2001: Implications of the Sr–Nd isotope ratios” Atmospheric Environment, Vol. 39, pp. 5568-5575, 2005.
Nishikawa, M., Quan, H., and Morita, M., “Preparation and evaluation of certified reference materials for Asian mineral dust,” Global Environment Research, Vol. 4, pp. 103-113, 2000.
Parrington, J.R. and Zoller, W.H., “Diurnal and longer-term temporal changes in the composition of atmospheric particles at Mauna Loa, Hawaii,” Journal of Geophysical Research, Vol. 89, pp. 2522-2534, 1984.
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Besile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M., “Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica,” Nature, Vol. 399, pp. 429-436, 1999.
Pohl, O., “Disease dustup,” Scientific American, Vol.289, pp.18-20, 2003.
Qi, G.W., Cao, J.J., Zhuo, L.X., Yu, B., and Wang, Z.W., “Chemical composition of PM10 in Hangzhou atmosphere,” Environmental Chemistry, Vol.24, No. 5, 2005.
Seidl, W., “A method for source identification from average aerosol chemical composition,” Journal of Aerosol Science, Vol. 29, pp. 229-230, 1998.
Sloane, C.S., Rood, M.J., and Rogers, C.F., “Measurements of aerosol particle size: Improved precision by simultaneous use of optical particle counter and nephelometer,” Aerosol Science and Technology, Vol. 14. pp. 289-301, 1991.
Su, W.H., “Dust and atmospheric aerosol,” Resource, Conservation and Recycling, Vol. 16, pp. 1-14, 1996.
Sun, J.M., “Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau,” Earth and Planetary Science Letters, Vol. 203, pp. 845-859, 2002.
Tao, L., Wang, J.L., Wu, W.J., and Yu, Y.X., “Application of strontium isotopes in study on evolvement of east Asian summer monsoon,” Journal of Chongqing University of Posts and Telecommunications (Natural Science), Vol. 17, pp. 516-520, No. 4, 2005.
Taylor, D.A., “Dust in the wind,” Environmental Health Perspectives, Vol. 110, No. 2, 2002.
Tsai, Y.I. and Chen, C.L., “Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan,” Atmospheric Environment, Vol. 40, pp. 4734-4750, 2006.
Turpin, B.J., Cary, R.A., and Huntzicker, J.J., “Time-resolved analyzed for aerosol organic and elemental carbon.” Aerosol Science Technology, Vol.12, pp. 161-171, 1990.
Uematsu, M., Merrill, J.T., Duce, R.A., and Prospero, J.M., “Atmospheric fluxes of Asian desert dust to the north Pacific: Temporal and spatial variability,” Atmospheric Environment - Part A General Topics, Vol. 20, pp. 2073, 1985.
Vaks, A., Bar-Matthews, M., and Ayalon, A., Matthews, A., Frumkin, A., Dayan, U., Halicz, L., Almogi-Labin, A., and Schilman, B., “Paleoclimate and location of the border between Mediterranean climate region and the Saharo-Arabian Desert as revealed by speleothems from the northern Negev Desert, Israel,” Earth and Planetary Science Letters, Vol. 249, pp. 384-399, 2006.
Verheyden, S., Keppens, E., Fairchild, I.J., McDermott, F., and Deis, D., “Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: Implications for paleoclimate reconstructions,” Chemical Geology, Vol. 169, pp. 131-144, 2000.
Watson, J.G., “The science of fine particulate matter,” Workshop on Sampling, Regulation, and Light Scattering Effects of PM2.5, pp. 1-14, 1998.
Watson, J.G. and Robinson, N.F., “A method to determine accuracy and precision required of receptor model measurements,” APCA Quality Assurance in Air Pollution Measurements Pittsburgh, Pennsylvania, 1984.
Wang, Y.Q., Zhang, X.Y., Arimoto, R., Cao, J.J., and Shen, Z.X., “Characteristics of carbonate content and oxygen isotopic composition of northern China soil and dust aerosol and its application to tracing dust sources,” Atmospheric Environment, Vol. 39, pp. 2631-2642, 2005.
Wedepohl, K.H., “The composition of the continental crust,” Geochimica et Cosmochimica Acta, Vol. 59, pp. 1217-1232, 1995.
Whitby, K.T. and Svedrup, G.M., “California aerosol: Their physical and chemical characteristics,” Advanced Environment Science Technology, Vol. 10, pp. 477, 1980.
Xu, H.H., Wang, Y.S., Wen, T.X., and He, X.X., “Size distributions and vertical distributions of water soluble ions of atmospheric aerosol in Beijing,” Environmental Science, Vol.28, No. 1, 2007.
Yokoo, Y., Nakano, T., Nishikawa, M., and Quan, H., “The importance of Sr isotopic composition as an indicator of acid-soluble minerals in arid soils in China,” Water, Air, and Soil Pollution, Vol. 130, pp. 763-768, 2001.
Yuan, C.S., Yuan, J.S., Hung, C.H., and Yuan, C., “Temporal and spatial distribution of PM2.5 and PM2.5-10 in South Taiwan,” The 92nd A&WMA Annual Meeting, St. Louis, Missouri, U.S.A., 1999.
Yuan, C.S., Sau, C.C., Chen, M.C., Huang, M.H., Chang, S.W., Lin, Y.C., and Lee, C.G., “Mass concentration and size-resolved chemical composition of atmospheric aerosols sampled at the Pescadores Islands during Asian dust storm periods in the Years of 2001 and 2002,” Terrestrial, Atmospheric and Oceanic Sciences, Vol. 15, pp. 857-879, 2004.
Yuan, C.S., Hai, C.X., and Zhao, M., “Source profiles and fingerprints of fine and coarse sands resurspended from the soils sampled in the Central Inner Mongolia,” Particuology, Vol. 4, pp. 304-311, 2006.
Yuan, C.S., Liu, Y.C., Hai, C.X., and Zhao, M., “Chemical approaches for identifying the source areas of Asian dusts sampled at the Pescadores Islands, Taiwan,” presented at the International Symposium on Ambient Particulate Matter-Techniques and Policies for Pollution Prevention and Control, Nankai University, Tianjin, China, 2007.
Zhang, D. and Iwasaka, Y., “Nitrate and sulfate in individual Asian dust-storm particles in Beijing, China in spring of 1995 and 1996,” Atmospheric Environment, Vol. 33, pp. 3213-3223, 1999.
Zhao, D., Xiong, J., Xu, Y., and Chan, W.H., “Acid rain in Southwestern China,” Atmospheric Environment, Vol. 22, pp. 349-358, 1988.
Zhao, M., Okada, K., Qian, F., and Su, L., “Characteristics of dust-storm particles and their long-range transport from China to Japan-case studies in April 1993,” Atmospheric Research, Vol. 40, pp. 19-31, 1996.
Zhuang, M., “Research on chemical characteristics of Xiamen fine air particles,” Modern Scientific Instruments, Vol. 5, pp. 113-115 ,2007.
劉山豪,”高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
葉俊榕,”大陸沙塵暴對中部地區酸性空氣污染物之影響”,國立中興大學環境工程研究所碩士論文,2002。
吳啟文,“臺灣中部都會區氣懸微粒粒徑分布之污染物特性分析”,國立中央大學環境工程研究所碩士論文,1996。
劉啟文,“亞洲沙塵好發期間雲水化學特性分析”,國立中央大學大氣物理研究所,2005。
郭承泉,“營建工程懸浮微粒污染特性分析”,私立元智大學機械工程研究所碩士論文,2003。
王景良,“中部空品區污染源逸散粉塵的組成分析”,國立中興大學環境工程研究所碩士論文,1999。
鐘博章,“東海南部大氣中金屬元素之濃度、來源及通量研究”,國立台灣大學海洋研究所碩士論文,2002。
黃譯樘,“台北都會區大氣懸浮微粒的化學特性研究”,國立台灣大學海洋研究所碩士論文,2002。
黃鈴珺,“彭佳嶼海域大氣懸浮微粒中金屬元素的濃度、來源及粒徑分佈研究”,國立台灣大學海洋研究所碩士論文,2002。
葉士鳴,“大氣中懸浮微粒含碳成分之分佈與來源”,國立成功大學環境工程研究所碩士論文,2002。
邵承宗,“大陸沙塵暴對澎湖地區懸浮微粒特性之影響研究”,國立中山大學環境工程研究所碩士論文,2003。
楊之遠,“大陸沙塵暴影響台灣地區空氣品質之監測與預報”,物理雙月刊,2001。
徐啟運、胡敬松,“我國西北地區沙塵暴天氣時空分布特徵分析”,中國沙塵暴研究,1996。
柳中明、楊之遠、彭立新、錢正安,“沙塵暴的過去、現在和未來”,大陸沙塵暴對台灣地區空氣影響與預測研討會,2001。
楊根生、肖洪浪、拓萬全,“中國西北地區5.5特大沙塵暴實例分析”,全球沙塵暴警世錄,中國環境科學出版社,2001。
王怡文,“東亞沙塵暴季節氣流軌跡與天氣條件分析”,台灣地球科學聯合學術研討會,2007。
劉乙琦、蔡協宏、覃偉民、袁中新,“2002~2005年台灣地區沙塵暴長程傳輸路徑及沙塵物化特徵比較分析”,中華民國環境工程學會第十九屆年會暨空氣污染控制技術研討會,2007。
沈振興、張小曳、曹軍驥、王亞強、季峻峰、梅凡民、鹿化煜、李旭祥,“中國沙塵源區粉塵氣溶膠的礦物組成特徵”,2004年春季兩岸四地環境保護研討會,2004。
陳昌國,詹忻,“重慶市區大氣顆粒物的物相組成分析”,環境化學,2003。
林宗嵩,余嘉裕,“1995年至2004十年間侵台大陸沙塵暴特殊個案分析”,第四屆海峽兩岸氣膠技術研討會暨第五屆海峽兩岸沙塵暴及環境治理學術研討會,2007。
李建璋,“台北盆地低能見度受空氣污染物及氣象條件影響之相關性分析”,國立中山大學環境工程研究所碩士論文,2007。
楊麗萍,陳發虎,“蘭州市大氣降塵污染物來源研究”,環境科學學報,2002。
黃耀田,“高雄都會區大氣中懸浮微粒趨勢分析及時空變化模擬”, 國立中山大學環境工程研究所碩士論文,2005。
夏敦勝,魏海濤,馬劍英,“中亞地區現代表土磁學特徵及其古環境意義”,第四紀研究,2006。
王麗雄,楊通在,姜濤,“大氣氣溶膠中鋰的化學分離與同位素比的質譜檢測”,分析化學,2006。
王亞強,曹軍驥,張小曳,“中國粉塵源區表土碳酸鹽含量與碳氧同位素組成”,海洋地質與第四紀地質,2004。
饒文波,楊杰東,陳駿,季峻峰,李高軍,“北方風塵中Sr-Nd同位素組成變化的影響因素探討”,第四紀研究,2005。
張西營,馬海州,譚紅兵,“Sr的地球化學指示意義及其應用”,鹽湖研究,2002。
楊杰東,陳駿,饒文波,李高軍,季峻峰,“中國沙漠的同位素分區特徵”,地球化學,2007。
陳駿,仇綱,楊杰東,“黃土碳酸鹽Sr同位素組成與原生和次生碳酸鹽識別”,自然科學進展,1997。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code