Responsive image
博碩士論文 etd-0904110-102902 詳細資訊
Title page for etd-0904110-102902
論文名稱
Title
可拋棄式矽基微型氯離子與銨離子感測器之研究
Study of Disposable Silicon-based Chlorine and Ammonium Micro Ion Sensors
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-31
繳交日期
Date of Submission
2010-09-04
關鍵字
Keywords
微型氯、銨離子感測器、拋棄式、離子選擇薄膜、延伸式閘極場效電晶體
Chloride and ammonium micro ion sensors, Extended-gate field-effect transistor, Disposable, Ion-selective membranes
統計
Statistics
本論文已被瀏覽 5682 次,被下載 0
The thesis/dissertation has been browsed 5682 times, has been downloaded 0 times.
中文摘要
人體血液會反映內臟器官和組織的健康狀態,當健康出現異常時,血液的成分就會受到影響,而血液中氯、銨離子濃度直接反映了人體腎臟及肝臟機能,為人體健康指標之重要參數。
針對即時監控檢測系統之應用,本研究利用微機電系統(MEMS)面型微加工(Surface micromachining)製程技術開發延伸式閘極場效電晶體(Extended-gate ion selective field effect transistor, EGFET),並結合兩種不同離子選擇薄膜(Ion selective membrane, ISM)分別製成可拋棄式矽基微型氯、銨離子感測器,主要製程步驟包含四道黃光微影製程及兩道薄膜沉積,其中調變下列三項元件設計參數並探討其影響:(i)通道寬長比;(ii)通道形狀;(iii)感測薄膜添加劑摻入比例。為使研究聚焦於上述三種因子,本論文所設計元件尺寸固定為6 mm3,感測面積也固定為1×1 mm2。
本論文所設計開發之最佳化微型氯、銨離子感測器,在10-1~10-5 mol/L量測範圍下,根據商用半導體分析儀(Agilent B1500A)所量測之結果顯示,氯、銨離子感測靈敏度為47.5 mV/pCl、41.2 mV/pNH4,其感測線性度分別達99.13%與99.28%,干擾離子選擇係數(logKCl,OH、logKNH ,Na)分別為-4.71與0.53。
Abstract
Human blood reflects the health of internal organs and tissues, the constituent can be affected on account of abnormal health status. Moreover, the ion concentration of chloride and ammonium in human blood relates to the functionality of our kidney and liver, which is one of the most important health indicators.
For real-time monitoring and detecting applications, this study uses micro-electromechanical systems (MEMS) surface micromachining process technology to develop an extended-gate field-effect transistors (EGFET), and by combining two different ion-selective membranes (ISM), a disposable silicon-based chloride and ammonium micro ion sensor was fabricated. The main process steps include four photolithography process and two thin film deposition. In order to probe into the influences on modulating three designing parameters: (i) channel width to length ratio; (ii) channel shape; (iii) mixing ratio of the sensing film additives, the size of the sensing area is fixed to 1×1 mm2 while the device is fixed to 6 mm3.
In this thesis, the optimization of the development chloride and ammonium micro ion sensors, according to the measuring results from the commercial semiconductor analyzer (Agilent B1500A), when measuring range of 10-1~10-5 mol/L, the sensitivity and linearity for the chlorine ion sensor is 47.5 mV/pCl and 99.13%, as for the ammonium ion sensor are 41.2 mV/pNH4 and 99.28%, the interfering ion selectivity coefficients (log KCl,OH, log KNH ,Na) are -4.71 and 0.53 respectively.
目次 Table of Contents
目 錄
摘要......................................................................................................... I
ABSTRACT.................................................................II
誌謝...... ......................................................................III
目錄........................................................................................................IV
圖目錄..................................................................................................VII
表目錄................................................................................................. XII

第一章 緒論...........................................1
1-1 前言 ............................................1
1-2 研究動機.....................................4
1-3 實驗方法與論文架構.................6
第二章 離子感測器之原理介紹...........8
2-1 離子感測器之種類.....................8
2-1-1 離子選擇電極...............................................................8
2-1-2 離子感測場效電晶體.................11
2-1-3 延伸式閘極感測場效電晶體......................................14
2-2 延伸式閘極感測場效電晶體原理介紹..............16
2-2-1 吸附鍵結模型..............................................................17
2-2-2 延伸式閘極感測場效電晶體工作原理.......................18
第三章 離子感測器之設計與製作........21
3-1 延伸式閘極感測場效電晶體結構與光罩佈局設計.............................................................21
3-2 延伸式閘極感測場效電晶體製程整合設計.....25
3-2-1 延伸式閘極場效電晶體製作流程............................ 25
3-2-2 詳細製程步驟與參數.................................................28
3-3 氯離子感測薄膜配製...................36
3-3-1 實驗藥品材料及參數擬定........................................37
3-4 銨離子感測薄膜配製....................39
3-4-1 實驗藥品材料及參數擬定........................................40
第四章 實驗結果與討論.........................42
4-1 延伸式閘極場效電晶體量測分析.................43
4-2 氯離子感測薄膜特性量測分析.....................46
4-3 銨離子感測薄膜特性量測分析.....................51
4-4 氯離子感測器之量測分析.............................56
4-4-1 感測靈敏度及線性度分析...................................... 56
4-4-2 感測遲滯效應分析...................................................61
4-4-3 氯離子與氫氧干擾離子選擇比.............................. 65
4-5 銨離子感測器之量測分析....................................................... 68
4-5-1 感測靈敏度及線性度分析........................................... 68
4-5-2 遲滯效應分析............................................................... 70
4-5-3 銨離子與鈉干擾離子選擇比....................................... 72
第五章 結論與建議...........75
5-1 結論.........................75
5-2 建議 ........................76
參考文獻.............................77
























圖目錄
圖1-1 市售離子感測器之演化趨勢.....................................................3
圖2-1 離子選擇電極感測示意圖.........................................................8
圖2-2 冠狀醚環洞大小對離子吸附特性示意圖...............................10
圖2-3 銨離子選擇物TD19C6吸附離子之示意圖...........................11
圖2-4 ISFET結構示意圖...................................................................13
圖2-5 MOSFET結構示意圖..............................................................13
圖2-6 延伸式離子感測場效電晶體之結構圖...................................15
圖2-7 Site-binding model模型示意圖...............................................17
圖3-1 電晶體通道寬長比設計...........................................................21
圖3-2 延伸式閘極場效電晶體光罩#0示意圖..................................23
圖3-3 延伸式閘極場效電晶體光罩#1示意圖..................................23
圖3-4 延伸式閘極場效電晶體光罩#2示意圖..................................24
圖3-5 延伸式閘極場效電晶體光罩#3示意圖..................................24
圖3-6 延伸式閘極場效電晶體之完整光罩佈局圖...........................25



圖3-7 延伸式閘極場效電晶體之元件製作流程圖:(a)蝕刻
矽基板定義對準圖型(光罩#0) (b) 成長阻擋氧化層
防止離子佈值穿透(c) 蝕刻氧化層定義離子佈值區
圖型(光罩#1)並保留一薄氧化層降低離子佈值所造
成之表面破壞(d) 進行熱退火且蝕刻去除所有阻擋
氧化層(e) 成長閘極氧化層(f)蝕刻氧化層定義金屬
接觸窗圖型(光罩#2)(g)沉積鉻/金金屬層(h)蝕刻金
屬定義主結構圖型(光罩#3) ................................................. .26
圖3-8 電晶體封裝流程示意圖...........................................................27
圖3-9 完整電晶體封裝示意圖...........................................................27
圖3-10 微型離子感測器製作流程.......................................................28
圖3-11 銨離子選擇物TD19C6化學結構圖........................................39
圖3-12 陰離子添加物KTCPB化學結構圖.........................................39
圖4-1 (a)延伸式閘極場效電晶體晶片(b)離子感測器封裝完成圖..42
圖4-2 方形源、汲極之閘極漏電流曲線圖(a)通道寬長比40 (b)
通道寬長比100........................................................................43
圖4-3 圓形源、汲極之閘極漏電流曲線圖(a)通道寬長比40 (b)
通道寬長比100........................................................................43


圖4-4 方形源、汲極之電晶體VD-ID特性曲線圖(a)通道寬長比
40 (b)通道寬長比100...............................................................45
圖4-5 圓形源、汲極之電晶體VD-ID特性曲線圖(a)通道寬長比
40 (b)通道寬長比100.............................................................45
圖4-6 離子選擇電極量測架構...........................................................46
圖4-7 TDMACl添加劑量1 mg之感測膜靈敏度..............................47
圖4-8 TDMACl添加劑量5 mg之感測膜靈敏度..............................47
圖4-9 TDMACl添加劑量10 mg之感測膜靈敏度............................48
圖4-10 氯離子感測膜ISE靈敏度量測曲線圖....................................49
圖4-11 TDMACl添加劑量1 ㎎之感測膜遲滯電壓量測.................49
圖4-12 TDMACl添加劑量5 ㎎之感測膜遲滯電壓量測.................50
圖4-13 TDMACl添加劑量10 ㎎之感測膜遲滯電壓量測...............50
圖4-14 KTCPB添加劑量1 mg之感測膜遲滯電壓量測...................52
圖4-15 KTCPB添加劑量5 mg之感測膜遲滯電壓量測...................52
圖4-16 KTCPB添加劑量10 mg之感測膜遲滯電壓量測.................52
圖4-17 銨離子感測膜ISE靈敏度量測曲線圖..................................53
圖4-18 KTCPB添加劑量1㎎之感測膜遲滯電壓量測.....................53
圖4-19 KTCPB添加劑量5㎎之感測膜遲滯電壓量測.....................54
圖4-20 KTCPB添加劑量10㎎之感測膜遲滯電壓量測...................54
圖4-21 微型離子感測器量測架構圖.................................................56
圖4-22 方形通道寬長比40量測pCl 1~ pCl 5:(a) ID-VG曲線
圖;(b) ID-VG局部放大圖;(c)線性度...................................57
圖4-23 方形通道寬長比100量測pCl 1~ pCl 5:(a) ID-VG曲線
圖;(b) ID-VG局部放大圖;(c)線性度.....................................58
圖4-24 圓形通道寬長比40量測pCl 1→pCl 5:(a) ID-VG曲線
圖;(b) ID-VG局部放大圖;(c)線性度...................................59
圖4-25 圓形通道寬長比100量測pCl 1→pCl 5:(a) ID-VG曲線
圖;(b) ID-VG局部放大圖;(c)線性度.....................................60
圖4-26 方形源、汲極通道寬長比40遲滯量測 (a) ID-VG曲線
圖;(b) ID-VG局部放大圖........................................................62
圖4-27 量測遲滯曲線圖(a)方形通道寬長比40 (b)方形通道寬
長比100..................................................................................63
圖4-28 量測遲滯曲線圖(a)圓形通道寬長比40 (b)圓形通道寬
長比100..................................................................................63
圖4-29 方形通道寬長比40量測pOH 1~pOH 5之ID-VG曲線圖.....65
圖4-30 方形通道寬長比100量測pOH 1~pOH 5之ID-VG曲線圖...66
圖4-31 圓形通道寬長比40量測pOH 1~pOH 5之ID-VG曲線圖.....66
圖4-32 圓形通道寬長比100量測pOH 1~pOH 5之ID-VG曲線圖...67
圖4-33 感測靈敏度與線性度(a)方形通道長寬比40 (b)方形通
道長寬比100..........................................................................68
圖4-34 感測靈敏度與線性度(a)圓形通道長寬比40 (b)圓形通
道長寬比100..........................................................................69
圖4-35 銨離子感測遲滯曲線圖(a)方形通道長寬比40 (b)方形
通道長寬比100......................................................................70
圖4-36 銨離子感測遲滯曲線圖(a)圓形通道長寬比40 (b)圓形
通道長寬比100......................................................................71
圖4-37 量測pNa 1~pNa 5之ID-VG曲線圖(a)方形通道寬長比
40(b)方形通道寬長比100......................................................72
圖4-38 量測pNa 1~pNa 5之ID-VG曲線圖(a)圓形通道寬長比
40(b)圓形通道寬長比100......................................................73







表目錄
表1-1 傳統型離子感測器與MEMS微小化的離子感測器比較……..2
表2-1 各式離子感測器之特性比較.....................................................16
表3-1 元件設計規格.............................................................................22
表3-2 延伸式閘極場效電晶體之製程Run Card.................................28
表3-3 標準清洗製程參數.....................................................................32
表3-4 反應式離子離子蝕刻之矽蝕刻製程參數表.............................33
表3-6 氯離子感測薄膜之成分比例.....................................................38
表3-7 銨離子感測薄膜之成分比例.....................................................41
表4-1 方形與圓形源、汲極之閘極漏電流比較...................................44
表4-2 氯離子感測薄膜量測數據整理表.............................................51
表4-3 銨離子感測數據整理表.............................................................55
表4-4 氯離子感測器靈敏度、線性度量測整理...................................61
表4-5 氯離子感測器遲滯效應量測整理.............................................64
表4-6 氫氧(OH)干擾離子量測整理.....................................................67
表4-7 銨離子感測器靈敏度、線性度量測整理...................................69
表4-8 銨離子感測器遲滯效應量測整理.............................................72
表 4-9 鈉(Na)干擾離子量測整理........................................................74
參考文獻 References
[1] X. J. Juan, L. X. Liang, and C. H. Yuan, “Analytical Aspects of FET-based Biosensors,” Frontiers in Bioscience, 10, pp. 420-430, 2005.
[2] S. Koch, and R. Taylor, “Chloride Ion in Intensive Care Medicine,” Critical Care Medicine, 20, pp. 227-240, 1992.
[3] H. Kenji, M. Hiroaki, and N. Naomi, “Chloride Ion Modulates Cell Proliferation of Human Androgen-independent Prostatic Cancer Cell,” Cell Physiology and Biochemistry, 25, pp. 379-388, 2010.
[4] D. Sinniah, T. T. Fulton, and H. Mcullough, “Venous Blood Ammonium Levels in Control Subjects and in Patients with Disorders of the Liver,” J. Clin Pathol, 23, pp. 720-726, 1970.
[5] F. Farnoush, G. M. Reza, and N. Parviz, “Ho3+ Ion Selective Microelectrode: An Asymmetric PVC Membrane Sensor,” Int. J. Electrochem. Sci., 4, pp. 1679-1690, 2009.
[6] M. S. Frant, “History of Early Commercialization of Ion-Selective Electrodes,” Analyst, vol.199, pp. 2293-2301, 1994.
[7] M. Gerard, A. Chaubey, and B. D. Malhotra, “Application of Conducting Polymers to Biosensors,” Biosens. Bioelectron., 17, pp. 345-359. 2002.
[8] H. Michio, “Crown Ethers and Analogous Compounds,” Elsevier. Press., pp. 100-110, 1992.
[9] S. Koji, D. Siswanta, O. Takeshi, and A. Tsuyoshi, “Design and Synthesis of a More Highly Selective Ammonium Ionophore Than Nonactin and Its Application as an Ion-Sensing Component for an Ion-Selective Electrode,” Anal. Chem., 72, pp. 2200-2205, 2000.

[10] S. S. Ichi, A. Tsuyoshi, and G. Monma, “Comparison of Two Molecular Design Strategies for the Development of an Ammonium Ionophore More Highly Selective than Nonactin,” Anal. Chem., 74, pp. 4845-4848, 2002.
[11] P. Bergveld, “Development of an Ion-sensitive Solid-state Device for Neurophysiological Measurements,” IEEE Transactions on Bio-Medical Engineering, pp. 70-71, 1970.
[12] C. J. Jorquera, O. Jahir, and B. Antoni, “ISFET Based Microsensors for Environmental Monitoring.” Sensors, 10, pp. 61-83, 2010.
[13] J. V. Spiegel, I. Lauks, P. Chan, and D. Babic, “The Extended Gate Chemical Sensitive Field Effect Transistor as Multi-species Microprobe,” Sensor and Actuator, 4, pp. 291-298, 1983.
[14] J. Schoning, and A. Poghossian, “Recent Advances in Biologically Sensitive Field-effect Transistors,” Analyst, 127, pp. 1137-1151, 2002.
[15] B. Johan, A. Ivaska, and A. Lewenstam, “Potentiometric Ion Sensors,” Chem. Rev., 108, pp. 329-351, 2008.
[16] D. E. Yate, S. Levine, and T. W. Healy, “Site-binding mode of the Electrical Double Layer at the Oxide/Water Interface,” Journal of the Chemical Society Faraday Transactions, 70, pp. 1807-1818, 1974.
[17] 黃義佑,含有積體化微固態參考電極及背接式結構的單晶片酸鹼值感測器,清華大學電機工程博士論文, 2002.
[18] I. Y. Huang, R. S. Huang, and L. H. Lo, “Improvement of Integrated Ag/AgCl Thin-film Electrodes by KCl-gel Coating for ISFET Applications,” Sensors and Actuators B: Chemical, vol. 94, 1, pp. 53-64, 2003.

[19] 龍威宇,可拋棄式微型鈣離子與鈉離子感測器之研究,中山大學電機工程碩士論文,2010.
[20] 張志翰,可拋棄式微型氫離子與鉀離子感測器之研究,中山大學電機工程碩士論文,2010.
[21] X. K. Ping, B. Philippe, and N. Seiichi, “A Chloride Ion-Selective Solvent Polymeric Membrane Electrode Based on a Hydrogen Bond Forming Ionophore,” Anal. Chem., 69, pp. 1038-1044, 1997.
[22] L. Monika, W. Marcin, and B. Ewa, “Chloride-Selective Electrodes with Poly(n-butyl acrylate) Based Membranes,” Electroanalysis, 19, no. 2-3, pp. 393 – 397, 2007.
[23] L. Xiaoxuan, J. Ming, and L. Xingwei, “Chlorine Ion Sensor Based on Polyaniline Film Electrode,” Sensors and Actuators B, 97, pp. 144–147, 2004.
[24] B. Andrey, A. Natalia, and D. Carlos, “Investigation of Chloride Sensitive ISFETs with Different Membrane Compositions Suitable for Medical Applications,” Anal. Chim. Acta, 514, pp. 99–106, 2004.
[25] Sigma-aldrich, ”http://WWW.sigmaaldrich.com”, P.O. Box. 14508, St. Louis, MO 63178, USA.
[26] K. H. Seok, P. H. Joo, O. H. Joon, and K. Y. Kook, “Thiazole Containing Benzo-Crown Ethers: A New Class of Ammonium-Selective Ionophores,” Anal. Chem., 72, pp. 4683-4688, 2000.
[27] K. H. Seok, D. K. Soon, K. K. Soo, S. J. Ho Shim, and C. G. Sig, “Ammonium Ion Binding Property of Naphtho-Crown Ethers Containing Thiazole as Sub-Cyclic Unit,” Bull. Korean Chem. Soc., vol. 25, no. 10, pp. 1465-1470, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.127.232
論文開放下載的時間是 校外不公開

Your IP address is 3.144.127.232
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code