Responsive image
博碩士論文 etd-0904112-064653 詳細資訊
Title page for etd-0904112-064653
論文名稱
Title
石墨烯飽和吸收體於不同分散劑產生穩定鎖模之研究
Graphene Mediated Saturable Absorber on Stable Mode-locked Fiber Lasers Employing Different Dispersants
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-11
繳交日期
Date of Submission
2012-09-04
關鍵字
Keywords
脈衝寬度、石墨烯、分散劑、鎖模雷射、調製深度
TCP, POEM, Mica, dispersants, graphene
統計
Statistics
本論文已被瀏覽 5674 次,被下載 664
The thesis/dissertation has been browsed 5674 times, has been downloaded 664 times.
中文摘要
本論文主要研究使用不同分散劑在石墨烯飽和吸收體薄膜對於被動鎖模雷射鎖模的脈衝寬度及穩定性之影響。石墨烯為碳的二維同素異形體,其結構完整而化學穩定性高故不易與溶劑作用;且其層與層之間有較強的凡得瓦力作用,故石墨烯需有分散劑幫助分散於水中。本研究使用POEM和Mica兩種分散劑來分散石墨烯並研究其鎖模效果,並在最後與CVD製程石墨烯飽和吸收體做比較。
石墨烯飽和吸收體的調制深度和石墨烯的分散程度及厚度-濃度乘積有關。實驗結果發現,在相近厚度-濃度乘積下,使用Mica作為分散劑會比使用POEM分散劑有較大的調制深度。濃度為2wt%,厚度為19μm的POEM分散劑石墨烯飽和吸收體薄膜可獲得的最短穩定脈衝寬度為422fs,光譜頻寬為6.35nm,脈衝時間寬度-頻寬乘積為0.332。當濃度為3wt%,厚度為12μm的Mica分散劑石墨烯飽和吸收體薄膜可獲得的最短穩定脈衝寬度為382fs,光譜頻寬為6.80nm,脈衝時間寬度-頻寬乘積為0.322。鎖模實驗的結果顯示Mica分散劑石墨烯飽和吸收體有較好的鎖模效果。最後我們在兩種分散劑的石墨烯飽和吸收體薄膜上各隨機選取九個位置做鎖模量測, POEM分散劑石墨烯飽和吸收體的脈衝寬度以442fs為中心上下離均差32fs;Mica分散劑石墨烯飽和吸收體的脈衝寬度以393fs為中心上下離均差14fs,結果顯示Mica分散石墨烯的均勻性優於POEM。
最後與21層堆疊的CVD結晶層狀石墨烯飽和吸收體做比較;21層堆疊的CVD結晶層狀石墨烯飽和吸收體可獲得的最短穩定脈衝寬度為483fs,光譜頻寬為6.16nm,脈衝時間寬度-頻寬乘積為0.323,本研究結果顯示溶液混合法比CVD製程之石墨烯飽和吸收體有較好的鎖模脈衝寬度。
石墨烯為極具潛力的飽和吸收體材料,且石墨烯利用溶液混合法可製作大面積成本低和製程簡單的飽和吸收體。選擇合適的分散劑對於溶液混合法製作的石墨烯飽和吸收體應用在被動鎖模雷射上能有較好的鎖模表現。
Abstract
Stable passive mode-locked fiber lasers(MLFLs) employing graphene saturable absorber (SA) are demonstrated. The graphene were dispersed in de-ionized water by two different dispersants including fluorinated mica clay (Mica) and poly(oxyethylene)-segmented imide (POEM). Using the SA made by graphene dispersed in Mica with thickness and concentration product (TCP) of 36 (μm*wt%), the MLFLs exhibited pulsewidth, 3-dB spectral bandwidth, and modulation depth (MD) of 382 fs, 6.80 nm, and 2.57%, respectively. The graphene dispersed in POEM provides a TCP of 38 (μm*wt%) to make the MLFLs deliver pulsewidth, 3-dB spectral bandwidth, and MD of 422 fs, 6.35 nm, and 1.70%, respectively. In comparison, the graphene SA dispersed by Mica performs a better MLFL pulse quality than that dispersed by POEM. Lastly, for investigating the dispersed uniformity between Mica and POEM, we randomly chose 9 pieces and measured the MLFL performance. The result showed that using the SA made by graphene dispersed in Mica with TCP of 36 (μm*wt%), the MLFLs exhibited pulsewidth of 393±14 fs, By contrast, the graphene dispersed in POEM provided a TCP of 38 (μm*wt%) to make the MLFLs delivered pulsewidth of 442±32 fs. This result reveals that graphene SA film dispersed by Mica exhibited better uniformity than POEM.
The MLFL of 21-layes CVD process graphene SA showed a pulsewidth of 432.47 fs, a bandwidth of 6.16nm, and a time-bandwidth product (TBP) of 0.323. This result showed that the solution blending process graphene SA exhibited better MLFL performance than CVD.
目次 Table of Contents
中文摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
第一章 導論 1
1.1 研究目的 1
1.2 論文架構 3
第二章 被動鎖模雷射原理 4
2.1 脈衝雷射 4
2.1.1 脈波操作 4
2.1.2 品質開關 4
2.1.3 模態鎖定 6
2.2 被動鎖模原理 8
2.2.1 飽和吸收體非線性吸收特性 8
2.2.3 飽和吸收體脈衝塑形效果 10
2.3 影響被動鎖模的因素 11


第三章 石墨烯飽和吸收體製備 14
3.1 石墨烯簡介 14
3.1.1 石墨烯結構與特性 14
3.1.2 石墨烯的飽和吸收機制 16
3.2 溶液混合方式石墨烯飽和吸收體製備 19
3.2.1 POEM分散劑石墨烯飽和吸收體薄膜 19
3.2.2 Mica分散劑石墨烯飽和吸收體薄膜 22
3.3 石墨烯飽和吸收體光學吸收特性 24
3.3.1 石墨烯飽和吸收體線性吸收特性 24
3.3.2 石墨烯飽和吸收體非線性穿透特性 25
第四章 被動鎖模雷射實驗架構與鎖模量測 28
4.1 摻鉺光纖環型雷射架構 28
4.2 鎖模雷射實驗與量測結果 29
4.2.1 濃度-厚度乘積(TCP)對於鎖模效果的影響 30
4.2.2 POEM分散劑石墨烯飽和吸收體鎖模量測結果 31
4.2.3 Mica分散劑石墨烯飽和吸收體鎖模量測結果 33
4.2.4 石墨烯飽和吸收體薄膜均勻性 35
4.3鎖模雷射實驗結果討綸 36


第五章 結晶層狀石墨烯飽和吸收體 37
5.1.1 CVD法製備石墨烯 37
5.1.2 CVD製程結晶層狀石墨烯飽和吸收體薄膜製備 38
5.2 低層數石墨烯飽和吸收體高非線性現象 41
5.3 CVD製程石墨烯飽和吸收體線性及非線性特性 43
5.3.1 線性吸收量測 43
5.3.2 非線性穿透量測 44
5.4 CVD製程結晶層狀石墨烯飽和吸收體鎖模量測 47
第六章 結論 55
參考資料 58
參考文獻 References
[1] A. M. Weiner, Ultrafast Optics, Wiley, New Jersey (2009)
[2] Y. C. Chen, N. R. Raravikar, L. S. Schadler, P. M. Ajayan, Y. P. Zhao, T. M. Lu, G. C. Wang, and X. C. Zhang, “Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55mm”, Appl. Phys. 81, 975-977 (2002)
[3] R. W. Newson, J. Dean, B. Schmidt, and H. M. Vandriel, “Ultrafast carrier kinetics in exfoliated graphene and thin graphite films”, Optics Express, 17, 2326 (2009)
[4] 楊國輝, 黃宏彥, 雷射原理與量測概論, 五南出版社 (2008)
[5] E. Garmire, “Resonant Optical Nonlinearities in Semiconductors”, IEEE J. Sel. Top. Quantum Electron., vol. 6, pp. 1094-1110 (2000)
[6] C. Rullière, Femtosecond Laser Pulses: Principles and Experiments, Springer, New York (1998)
[7] 邱金城, “奈米碳管飽和吸收體增強鎖模雷射非線性自相位調變之研究”, 國立中山大學博士論文 (2010)
[8] H. A. Haus, “Theory of Mode Locking with a Fast Saturable Absorber”, J. Appl. Phys., Vol. 46, pp. 3049-3058 (1975)
[9] F. X. Kaertner, “Mode-locked Laser Theory”, physics.gatech.edu, Chap.1 (2006)
[10] M. I. Katsnelson, “Graphene: carbon in two dimensions”, Materials Today, 10, 20 (2007)


[11] Physics of the Royal Swedish Academy of Sciences, “graphene”, Scientific Background on the Nobel Prize in Physics 2010 GRAPHENE (2010)
[12] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, “The electronic properties of graphene”, Reviews of Modern Physics, 81, 109 (2009)
[13] Y. W. Song, S. Y. Jang, W. S. Han, and M. K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction”, Appl. Phys. Lett., 96, 051122 (2010)
[14] Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-locked Ultrafast Laser”, ACSNANO, 4, 803 (2010)
[15] P. L. Haung, H. H. Kuo, R. X. Dong, B. Z. Hsieh, S. H. Haung, S. F. Hong, P. T. Shin, C. Y. Yeh, G. R. Lin, J. J. Lin, W. H. Cheng, “Performance of graphene mediated saturable absorber on stable mode-locked fiber lasers employing different nano-dispersants”, JLT-14301-2012 (2012)
[16] Y. F. Lan, J. J. Lin, “Observation of Carbon Nanotube and Clay Micellelike Microstructures with Dual Dispersion Property”, J. Phys. Chem. A 2009, 113, 8654-8659
[17] J. J. Lin, Y. M. Chen, “Amphiphilic Properties of Poly(oxyalkylene)amine-Intercalated Smectite Aluminosilicates”, American Chemical Society (2004)



[18] H. Y. Juan, “Graphene: Synthesis, Functionalization and Applications in Chemistry”, Acta Phys. Chim. Sin., 26(8), 2073-2086 (2010)
[19] A. N. Obraztsov, “Chemical vapour deposition: Making graphene on large scale”, Nat. Nanotechnol., 4, 212 (2009)
[20] P. Lauffer, K. V. Emtsev, R. Graupner, T. Seyller, and L. Ley, “Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy”, Physica Review B 77, 155426 (2008)
[21] Q. L. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. Shen, K. P. Loh, and D. Y. Tang, “Atomic layer graphene as saturable absorber for ultrafast pulsed laser”, Adv. Funct. Mater. 19(19), 3077-3083 (2009)
[22] U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers”, Phys. Rep. 429(2), 67-120 (2006)
[23] E. Garmine, ed., Nonlinear Optics in Semiconductor(Academic, 1999), vol. 59.
[24] A. H. Castro Neto, “Graphene Phonons behaving badly”, Nat. Mater. 6(3), 176-177 (2007)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code