Responsive image
博碩士論文 etd-0904112-172733 詳細資訊
Title page for etd-0904112-172733
論文名稱
Title
平面式/滾筒式近場靜電紡絲製程之PVDF/MWCNT壓電纖維機械性質探討
Mechanical properties of PVDF/MWCNT fibers prepared by flat/cylindrical near-field electrospinning
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
133
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-21
繳交日期
Date of Submission
2012-09-04
關鍵字
Keywords
硬度、抗拉強度、聚偏氟乙烯、近場靜電紡絲、伸長量、楊氏係數、多壁奈米碳管、空心圓筒製程
Multi-walled carbon nanotube, Polyvinylidene Fluoride, Young’s modulus, Hardness, Cylindrical process, Near-field electrospinning, Tensile strength, Elongation
統計
Statistics
本論文已被瀏覽 5710 次,被下載 1624
The thesis/dissertation has been browsed 5710 times, has been downloaded 1624 times.
中文摘要
本論文使用平面式與空心圓筒之近場靜電紡絲製程(Near-Field Electrospinning, NFES)製備聚偏氟乙烯(Polyvinylidene Fluoride,PVDF)與添加多壁奈米碳管(Multi-Walled Carbon Nanotube, MWCNT)之壓電纖維,然後量測其機械性質。PVDF為一具有優異壓電特性的高分子材料,並結合了良好的機械、熱學、電學性能與化學阻抗能力。現今的研究多著重於壓電薄膜製程,而較少研究壓電纖維之特性。
本文使用奈米壓痕試驗(MTS Nanoindenter Windows XP System)及抗拉強度試驗(Microforce Testing System)量測電紡出之PVDF與MWCNT合成之奈米纖維的機械性質(楊氏模數、硬度、抗拉強度、伸長量)。製程設計一具有電場(1x107V/m)、轉動速度900 rpm之玻璃空心圓筒置於一雙軸式數值控制平台,PVDF溶液濃度為16%添加0.03%之MWCNT便可電紡出具有極化形態、機械拉伸特性之PVDF奈米纖維。經過奈米壓痕試驗抗拉強度測試可驗證在空心圓筒之近場靜電紡絲製程下可具有良好的機械特性。實驗結果顯示在空心圓筒製程下壓電纖維之機械性質將比平面式近場靜電紡絲製程更為優異。在空心圓筒的製程下,濃度16%的PVDF壓電纖維之楊氏模數和硬度分別為0.89GPa及26.5MPa,在添加0.03%之MWCNT後分別增加了56.2%及49.4%來到1.39GPa和39.6MPa;抗拉強度和斷裂時之伸長量則增加了32.7%及35%,相較於平面式的近場靜電紡絲,空心圓筒製程所製備之奈米纖維將具有更優異的機械強度。
Abstract
This study presents near-field electrospinning (NFES) on flat and hollow cylindrical process to fabricate permanent piezoelectricity of polyvinylidene fluoride (PVDF)/ multi-walled carbon nanotube (MWCNT) piezoelectric nanofibers. Then the mechanical properties of fibers were measured. PVDF is a potential piezoelectric polymer material combining desirable mechanical, thermal, electrical properties with excellent chemical resistance. The existing researches mostly focused on piezoelectric thin film process. However, the research of characteristic about piezoelectric fiber is little. The methods of measurement of the mechanical properties (Young’s modulus, hardness, and tensile strength、elongation) of the electrospun PVDF/MWCN composite nanofiber were carried out by using nano-indention test (MTS Nanoindenter Windows XP System) and tensile test (Microforce Testing System). By setting electric field (1×107 V/m), rotating velocity (900 rpm) of the hollow cylindrical glass tube on a motion X-Y stage (2 mm/sec) and PVDF solution concentration (16 wt%), and MWCNT (0.03 wt%), in-situ electric poling, mechanical stretching and morphology of PVDF nanofiber were demonstrated. After the experiments of nano-indention test and tensile strength test, it is suggested that the good mechanical properties in NFES on cylindrical process. The results show that the mechanical properties of composite nanofiber are better than the conventional NFES process. The Young’s modulus of 16% PVDF fiber prepared by cylindrical process is 0.89 GPa and hardness is 26.5 MPa. The mechanical properties were increased 56.2% and 49.4% after adding 0.03% of MWCNT, corresponding to 1.39 GPa and 39.6 MPa. The tensile strength was increased 32.7% and elongation at breaking point was increased 35% after adding 0.03% MWCNT.
目次 Table of Contents
目錄
中文摘要 ........................................................................................................................... I
英文摘要 ........................................................................................................................ IV
圖目錄 ............................................................................................................................ IX
表目錄 ......................................................................................................................... XIV
符號列表 .......................................................................................................................XV
第一章 緒論 .................................................................................................................. 1
1-1前言........................................................................................................................ 1
1-2文獻回顧................................................................................................................ 2
1-3研究動機與目的.................................................................................................... 8
第二章 理論分析 ........................................................................................................ 10
2-1奈米壓痕試驗之理論.......................................................................................... 10
2-2奈米壓痕試驗之探針幾何形狀和形式.............................................................. 11
2-3奈米壓痕試驗之硬度以及楊氏係數理論.......................................................... 14
2-4動態壓痕試驗...................................................................................................... 20
2-4-1動態壓痕系統量測之理論原理................................................................... 20
2-4-2材料為黏彈性的複合模數建構................................................................... 23
2-5傳統靜電紡絲原理及近場靜電紡絲原理.......................................................... 24
2-5-1傳統靜電紡絲............................................................................................... 24
2-5-2近場靜電紡絲............................................................................................... 25
2-6實驗儀器基本原理.............................................................................................. 25
2-6-1掃描式電子顯微鏡....................................................................................... 25
2-6-2拉伸試驗 ....................................................................................................... 26
第三章 實驗方法與步驟 .............................................................................................. 28
3-1實驗流程.............................................................................................................. 28
3-2近場靜電紡絲製程.............................................................................................. 29
3-2-1平面式近場靜電紡絲製程........................................................................... 29
3-2-2滾筒式近場靜電紡絲製程........................................................................... 30
3-3實驗儀器與設備.................................................................................................. 31
3-3-1雙軸式數值控制平台................................................................................... 31
3-3-2高壓電源供應器........................................................................................... 32
3-3-3紫外線固化機............................................................................................... 32
3-3-4超音波震盪器............................................................................................... 32
3-3-5奈米壓痕系統............................................................................................... 33
3-3-6微型機性測試機........................................................................................... 35
3-3-7掃描式電子顯微鏡....................................................................................... 36
3-3-8平面式近場靜電電紡儀器之架設............................................................... 36
3-4製程之溶液調配.................................................................................................. 39
3-4-1本實驗所使用之化學藥品........................................................................... 39
3-4-2溶液調製過程............................................................................................... 40
3-5針對不同製程參數進行電紡實驗...................................................................... 41
3-5-1針頭內徑....................................................................................................... 42
3-5-2雙軸式數位平台與滾筒收集裝置之速度................................................... 42
3-5-3電場大小....................................................................................................... 43
3-5-4溶液濃度....................................................................................................... 43
3-6平面式/滾筒式近場靜電紡絲製程..................................................................... 44
3-6-1進行平面式近場靜電紡絲製程................................................................... 44
3-6-2進行滾筒式近場靜電紡絲製程................................................................... 45
3-7奈米壓痕系統試驗.............................................................................................. 46
3-7-1奈米壓痕試驗之試片製備........................................................................... 47
3-8抗拉強度試驗...................................................................................................... 48
第四章 結果與討論 ...................................................................................................... 50
4-1平面式/滾筒式近場靜電電紡製程及選用溶液濃度之探討............................. 50
4-2平面式/滾筒式製程之針頭尺寸對PVDF壓電纖維的影響............................. 51
4-3平面式/滾筒式製程之電場大小對PVDF壓電纖維的影響............................. 53
4-4平面式/滾筒式製程之電紡拉伸速度對PVDF壓電纖維的影響..................... 54
4-5透過SEM、OM拍攝圖探討壓電纖維成形..................................................... 57
4-6添加MWCNT之濃度探討................................................................................. 61
4-7奈米壓痕試驗於PVDF壓電纖維之量測討論.................................................. 62
4-7-1壓痕深度與負載曲線之分析....................................................................... 65
4-7-2平面式/滾筒式製程之壓痕深度與楊氏係數曲線之分析.......................... 66
4-7-3平面式/滾筒式製程之PVDF壓電纖維之楊氏模數比較.......................... 75
4-7-4壓痕深度與硬度曲線之分析....................................................................... 79
4-7-5平面式/滾筒式製程之PVDF壓電纖維之硬度比較.................................. 86
4-8 PVDF壓電纖維抗拉強度試驗量測結果........................................................... 91
第五章 結論 ................................................................................................................ 108
5-1結論.................................................................................................................... 108
5-2未來展望............................................................................................................ 109
參考文獻……………...………………………………………………………………110
參考文獻 References
參考文獻
1. D. Sun, C. Chang, S. Li, L. W. Lin, “Near-Field Electrospinning,” Nano Letters, Vol.
6, No. 4, pp. 839-842, 2006.
2. Lord Rayleigh, “On the equilibrium of liquid conducting masses charged with electricity”, London, Edinburgh, and Dublin Phil. Mag. J. 44 184–6, 1882.
3. Cooley J F 1902 Apparatus for electrically dispersing fluids US Patent Specification
692631.
4. Formhals A 1934 Process and apparatus for preparing artificial threads US Patent Specification 1975504.
5. Formhals A 1938a artificial fiber construction US Patent Specification 2109333.
6. Formhals A 1938b Method and apparatus for the production of fibers US Patent Specification 2116942.
7. Formhals A 1938c Method and apparatus for the production of fibers US Patent Specification 2123992.
8. Formhals A 1939a Method and apparatus for the production of artificial fibers US Patent Specification 2158416.
9. Formhals A 1939b Method and apparatus for spinning US Patent Specification 2160962.
10. G. I. Taylor, “Electrically driven jets,” Proc. R. Soc. London, Ser. A 313, 453, 1969.
11. V. B. Gupta, V. K. Kothari, “Manufactured Fibre Technology,” 1997.
12. M. S. Khil, S. R. Bhattarai, H. Y. Kim, S. Z. Kim, K. H. Lee, “Novel fabricated matrix via electrospinning for tissue engineering,” J. Biomed. Mater. Res., Vol. 72B, pp. 117-124, 2005.
13. P. K. Baumgarten, “Electrostatic spinning of acrylic microfibers,” J. Colloid Interface Sci., Vol.36, pp. 71-79, 1971.
14. D. H. Reneker, I. Chun, “Nanometre diameter fibres of polymer, produced by electrospinning,” Nanotechnology 7, pp. 216–223, 1996.
15. U. Landman, W. D. Luedtke, N. A. Burnham, R. J. Colton, “Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture,” Science, Vol. 248, No. 4954, pp.454-461, 1990.
16. W. J. Chou, G. P. Yu, J. H. Huang, “Mechanical properties of TiN thin film coatings on 304 stainless steel substrates,” Surface and Coatings Technology, Vol. 149, pp. 7-13, 2002.
17. J. H. Ahn, D. Kwon, “Micromechanical estimation of composite hardness using nanoindentation technique for thin-film coated system,” Materials Science and Engineering A, Vol. 285, pp. 172-179, 2000.
18. T. H. Fang, W. J. Chang, “Nanomechanical properties of copper thin films on different substrates using the nanoindentation technique,” Microelectronic Engineering, Vol. 65, pp. 231-238, 2003.
19. J. Chen, W. Wang, L. H. Qian, K. Lu, “Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation,” Scripta Materialia, Vol. 49, pp. 645-650, 2003.
20. W. W. Gerberich, D. E. Kramer, N. I. Tymiak, A. A. Volinsky, D. F. Bahr and M. D. Kriese, “Nanoindentation-induced defect-interface interactions: phenomena, methods and limitations,” Acta. Mater., Vol. 47, pp. 4115-4123, 1999.
21. D. Beegan, S. Chowdhury, M. T. Laugier, “A nanoindentation study of copper films on oxidised silicon substrates,” Surface and Coatings Technology, Vol. 176, pp. 124-130, 2003.
22. D. Beegan, S. Chowdhury, M. T. Laugier, “The nanoindentation behaviour of hard and soft films on silicon substrates,” Thin Solid Films, Vol. 466, pp. 167-174, 2004.
23. Y. Liu, A. H. W. Ngan, “Depth dependence of hardness in copper single crystals measured by nanoindentation,” Scripta Materialia, Vol. 44, pp. 237-241, 2001.
24. J. L. He, Y. Setsuhara, I. Shimizu, S. Miyake, “Structure refinement and hardness enhancement of titanium nitride films by addition of copper,” Surface and Coatings Technology, Vol. 137 pp. 38-42, 2001.
25. B. Savoini, D. Caceres, R. Gonzalez, Y. Chen, J. V. Pinto, R. C. da Silva, E. Alves, “Copper nanocolloids in MgO crystals implanted with Cu ions,” Nuclear Instruments and Methods in Physics Research Section B, Vol. 218 , pp. 148-152, 2004.
26. G. Wei, B. Bhushan, N. Ferrell and D. Hansford, “Microfabrication and nanomechanical characterization of polymer microelectromechanical system for biological applications,” Journal of Vacuum Science & Technology A, Vol. 23, pp. 811-819, 2005.
27. F. Yang, “Thickness effect on the indentation of an elastic layer,” Materials Science and Engineering A, Vol. 358, pp. 226-232, 2003.
28. J. Qi, C. Y. Chan, I. Bello, C. S. Lee, S. T. Lee, J. B. Luo, S. Z. Wen,“Film thickness effects on mechanical and tribological properties of nitrogenated diamond-like carbon films,” Surface and Coatings Technology, Vol. 145, pp. 38-43, 2001.
29. A. Misra, M. Verdier, Y. C. Lu, H. Kung, T. E. Mitchell, M. Nastasi, J. D. Embury, “Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites,” Scripta Materialia, Vol. 39, pp. 555-560, 1998.
30. L. Thilly, F. Lecouturier, J. von Stebut, “Size-induced enhanced mechanical properties of nanocomposite copper/niobium wires: nanoindentation study,” Acta Materialia, Vol. 50, pp. 5049-5065, 2002.
31. Y. M. Soifer, A. Verdyan, M. Kazakevich, E. Rabkin, “Nanohardness of copper in the vicinity of grain boundaries,” Scripta Materialia, Vol. 47, pp. 799-804, 2002.
32. H. C. Barshilia, K. S. Rajam, “Characterization of Cu/Ni multilayer coatings by nanoindentation and atomic force microscopy,” Surface and Coatings Technology, Vol. 155, pp. 195-202, 2002.
33. R. W. Armstrong, H. Shin and A. W. Ruff, “Elastic/plastic effects during very low-load hardness testing of copper,” Acta Metall. Mater., Vol. 43, pp.1037-1043, 1995.
34. B. J. Briscoe, K. S. Sebastian, “The elastoplastic response of poly(methyl methacrylate) to indentation,” Proc. R. Soc. Lond. A, Vol. 452, pp. 439-457, 1996.
35. M. J. Adams, D. M. Gorman, S. A. Johnson, B. J. Briscoe, “Indentation depth recovery in poly(methyl methacrylate) sheet on the microlength scale,” Philosophical Magazine A, Vol. 82, pp. 2121-2131, 2002.
36. A. Akram, B. J. Briscoe, M. J. Adams, S. A. Johnson, “ Nanoindentation of polymer-bound silica agglomerate layers,” Philosophical Magazine A, Vol. 82, pp. 2103-2112, 2002.
37. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, Vol. 354, pp. 56-58, 1991.
38. J. Alper, “Nanotubes Poised to Help Cancer Patients,” NCI Alliance for Nanotechnology in Cancer, 2006.
39. Jean-Paul Salvetat, G. Andrew, D. Briggs, Jean-Marc Bonard, R. R. Bacsa,A. J. Kulik, T. Stockli, N. A. Burnham, Laszlo Forro, “Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes,” Physical Review Letters, Vol.82,No.5, 1999.
40. A. Vinogradova, F. H. Ferroelectrics, “Electro-mechanical properties of thepiezoelectric polymer PVDF,” Ferroelectrics, Vol. 226, pp. 169-181, 1999.
41. S. C. Lin, C. Kamsler, US Patent 6362271, 2002.
42. C. Chang, Y. K. Fuh, L. W. Lin, “A direct-write piezoelectric PVDF nanogenerator,” Nano Letters, Vol. 6, No. 4, pp. 839-842, 2006.
43. F. D. A. Silva, N. Chawla, R. D. D. T. Filho, “Tensile behavior of high performance natural (sisal) fibers,” Composites Science and Technology, Vol.68, pp.3438-3443, 2008.
44. G. Chai, Y. Sun, J. J. Sun, Q. Chen, “Mechanical properties of carbon nanotube–copper nanocomposites,” G. Chai, Y. Sun, J. J. Sun, Q. Chen, J. Micromech. Microeng., Vol. 18, 2008.
45. H. Hertz, “Uber die Beruhrung fester elastischer Korper,” Journal fur die reine und angewandte Mathematik, Vol. 92, pp. 156-171, 1881.
46. I. N. Sneddon, “The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile,” Int. J. Eng. Sci., Vol. 3, pp.47-57, 1965.
47. D. Tabor, “A Simple Theory of Static and Dynamic Hardness,” Mathematical and Physical Sciences, Vol. 192, pp. 247-274, 1948.
48. M. Doerner, W. D. Nix, “A method for interpreting the data from depth-sensing indentation instruments,” Journal of Materials Research, Vol. 1, pp. 601-609, 1986.
49. W. C. Oliver, G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, Vol. 7, pp. 1564-1583, 1992.
50. T. Ohmura, S. Matsuoka, K. Tanaka, T. Yoshida, “Nanoindentation Load–Displacement Behavior of Pure Face Centered Cubic Metal Thin Films on a Hard Substrate,”Thin Solid Films, Vol. 385, pp.198-204, 2001.
51. J. B. Pethica, R. Hutchings, W. C. Oliver, “Hardness Measurement at Penetration Depths as Small as 20 nm,” Philos. Mag. A, Vol. 48, pp. 593-606, 1983.
52. G. M. Pharr, W. C. Oliver, F. R. Brotzen, “On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation,” J. Mater. Res., Vol. 7, pp. 613-617, 1992.
53. R. B. King, “Elastic analysis of some punch problems for a layered medium,”Int. J. Solids Struct., Vol. 23, pp. 1657-1664, 1987.
54. 黃惠忠, “奈米材料分析,” 滄海書局, 2004.
55. R. C. Hibbeler, “Mechanics of Materials”, U.S.A.: Pearson Education, Inc., 2003.
56. S. Tasakaa, S. Miyata, “The origin of piezoelectricity in poly(vinylidene fluoride),” Ferroelectrics, Vol. 32, pp. 17-23, 1981.
57. IEEE 5th International Symposium on Micro Machine and Human Science proceedings, pp.75, 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code