Responsive image
博碩士論文 etd-0904117-165712 詳細資訊
Title page for etd-0904117-165712
論文名稱
Title
近場靜電紡應用於生物可相容聚胜肽型壓電纖維開發
Development of Biocompatible Polypeptide Piezoelectric Fibers by Near-Field Electrospinning Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-10-02
繳交日期
Date of Submission
2017-10-04
關鍵字
Keywords
蜘蛛絲、近場靜電紡、壓電、聚胜肽、纖維
fibers, spider silk, near-field electrospinning, piezoelectric, polypeptide
統計
Statistics
本論文已被瀏覽 5657 次,被下載 0
The thesis/dissertation has been browsed 5657 times, has been downloaded 0 times.
中文摘要
本研究提出近場靜電紡絲技術 (Near-field electrospinning, NFES) 應用在生物可相容聚胜肽型壓電纖維的開發,其主要由蜘蛛絲 (Spider silk) 內的聚胜肽 (Polypeptide) 壓電特性 (Piezoelectric properties) 啟發及驗證,藉由結合近場靜電紡製作聚偏氟乙烯 (Poly (vinylidene fluoride), PVDF) 壓電纖維 (Piezoelectric fibers)的 44 μS/cm電紡溶液電導率、1.60×10^7 V/m電場、1 mm收集間距、0.50 ml/hr溶液推進速率與收集裝置2618.10 mm/s切線速度的穩定參數,電紡出聚谷氨酸苄酯 (Poly (γ-benzyl α L-glutamate), PBLG)與聚谷氨酸甲酯 (Poly (γ-methyl l-glutamate), PMLG) 的聚胜肽壓電纖維,並透過微拉伸實驗 (Micro tensile testing) 、傅立葉紅外光譜 (Fourier Transform Infrared Spectroscopy, FTIR) 及電性 (Electricity properties) 的量測,最後混摻出具有高壓電特性且可生物相容性之PMLG/PVDF的聚生肽纖維。實驗結果證實蜘蛛絲經由極化後會使聚胜肽中二級結構的α-螺旋 (α-helix) 與β-折板 (β-sheet) 分子結構形成有序的排列,可以得到4 Hz電性量測下輸出40.70 mV電壓訊號與105 nA電流訊號,並從近場靜電紡絲實驗中建立出的穩定製成參數亦可分別成功的製作出純料PBLG、PMLG,以及混摻PMLG/PVDF的聚胜肽壓電纖維,其於相較之下混摻PMLG/PVDF聚胜肽纖維的壓電特性大於純料的PBLG與PMLG,最大可輸出115 mV的電壓與173 nA的電流,且於8 MΩ負載下,即獲得722 pW的最大功率輸出。
Abstract
This study presents polypeptide piezoelectric fibers with biocompatibility by near-field electrospinning (NFES), which is inspired by the polypeptide of spider silk initially. Poly (γ-benzyl α L-glutamate) (PBLG) fiber and Poly (γ-methyl l-glutamate) (PMLG) fiber are obtained by NFES. Parameters of PBLG and PMLG fiber process are based on Poly (vinylidene fluoride) (PVDF) fiber where electrospinning solution conductivity is 44 μS/cm, electric field is 1.60×10^7 V/m, collecting gap is 1 mm, speed rate of infusion pump is 0.50 ml/hr, and tangent speed of collecting device is 2618.10 mm/s. Moreover, the blends of PMLG/PVDF with biocompatibility are obtained. Micro tensile testing, Fourier transform infrared spectroscopy (FTIR), and electricity test of the blends of PMLG/PVDF are carried out. The results show that spider silk after polarization was made to have α-helix and β-sheet of secondary structure with orderly arrangement. The open circuit voltage and close loop current of spider silk are 40.70 mV and 105 nA, respectively. The blends of PMLG/PVDF with high piezoelectric effect are fabricated successfully. The maximum open circuit voltage and close loop current of PMLG/PVDF fiber are reached to 115 mV and 173 nA, respectively. The output power of PMLG/PVDF fiber under 8 MΩ is 722 pW.
目次 Table of Contents
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 9
1.3 研究目的 9
1.4 論文架構 10
第二章 文獻回顧 11
2.1 壓電效應 11
2.1.1正逆壓電效應 12
2.2 壓電材料 13
2.3 PVDF壓電材料 14
2.4聚胜肽 17
2.5 聚胜肽中氫鍵與壓電特性之關係 19
2.6 電紡製程技術 23
第三章 研究方法與步驟 26
3.1 天然聚胜肽的蜘蛛絲抽絲 27
3.2 PVDF電紡溶液配置與溶液電導率之量測 29
3.2.1 PVDF電紡溶液配置 29
3.2.2 PVDF電紡溶液電導率之量測 30
3.3 PBLG、PMLG與PVDF/PMLG混摻聚胜肽之電紡溶液配置 32
3.3.1 PBLG聚胜肽材料之電紡溶液配置 32
3.3.2 PMLG聚胜肽材料之電紡溶液配置 33
3.3.3 PVDF/PMLG混摻聚胜肽材料之電紡溶液配置 34
3.4 近場靜電紡製程與設備 36
3.5 蜘蛛絲與近場靜電紡之纖維性質量測 38
3.5.1表面特徵量測 38
3.5.2材料特性量測 39
3.5.2機械性質量測 41
3.6 電能擷取片製作與電性量測 42
第四章 結果與討論 46
4.1天然胜肽的蜘蛛絲特性探討 46
4.1.1 取絲速率與絲線徑之關係 46
4.1.2 蜘蛛絲機械特性探討 47
4.1.3 蜘蛛絲未極化與極化之材料特性探討 48
4.1.3 蜘蛛絲電特性量測 50
4.2 近場靜電紡之製程參數與PVDF壓電纖維特性關係探討 54
4.2.1電場強度與PVDF壓電纖維的線徑關係 54
4.2.2收集裝置的切線速度與PVDF壓電纖維的線徑關係 55
4.2.3 PVDF壓電纖維的機械特性探討 56
4.2.4 PVDF壓電纖維的材料性質探討 57
4.2.5 PVDF壓電纖維的電特性探討 58
4.3 純PBLG、PMLG聚胜肽壓電纖維探討 60
4.3.1聚胜肽壓電纖維機械特性 60
4.3.2聚胜肽壓電纖維材料特性 62
4.3.3聚胜肽壓電纖維電特性 64
4.4 PMLG/PVDF混摻之聚胜肽壓電纖維探討 67
4.4.1材料特性探討 67
4.4.2機械特性探討 69
4.4.3 PMLG/PVDF混摻之聚胜肽壓電纖維電特性探討 70
第五章 結論與未來展望 72
參考文獻 74
參考文獻 References
[1] Bill Gates , Nathan Myhrvold, Peter Rinearson, “The Road Ahead”, Viking, 1995.
[2] 翁舒婷,“30個關鍵字讓你搞懂物聯網”,數位時代,2015。.
[3] A.I. Luigi Atzori, Antonio Iera, Giacomo Morabito, “The Internet of Things: A Survey”, Computer Networks, 54, pp. 2787-2805, 2010.
[4] 余至浩,“【2017關鍵趨勢:IoT】傳輸技術大躍進,物聯網市場今年挑戰破兆”,電週文化事業,2017。.
[5] 林信亨,“智慧穿戴_創新生活_解析智慧穿戴式裝置市場趨勢與創新產品應用”,台灣財團法人資訊工業策進會,2017。.
[6] Dylan McGrath, “News & Analysis : Sensor Sales Finally Catch Fire”, EE Times, 2017.
[7] 彭慧明,“財經觀點_行動化趨勢穿載裝置將成核心產品”,聯合報,2015。.
[8] 賴明豐,“穿戴式裝置在高齡化社會健康醫療照護環節中扮演重要的角色”,2015。.
[9] DIGITIMES企劃,“智慧醫療需求帶動穿戴裝置技術發展”,DIGITIMES-物聯網電子時報,2015.
[10] Zhong Lin Wang, “Self-Powered Nanotech”, Scientific American, 298, pp. 82-87, 2008.
[11] Sheng Xu, Yong Qin, Chen Xu, Yaguang Wei, Rusen Yang, Zhong Lin Wang, “Self-Powered Panowire Devices”, Nature Nanotechnology, 5, pp. 366-373, 2010.
[12] Anne Trafton, “Wireless Power Could Enable Ingestible Electronics”, Massachusetts Institute of Technology, 2017.
[13] Stephanie Mlot, “Motorola Patent Tips Electronic Microphone Throat Tattoo”, PC Review, 2013.
[14] Meghan Steele Horan, “Battery-Free Implantable Medical Device Draws Energy Directly from Human Body”, University of California Los Angeles Newsroom-Science Technology, 2017.
[15] DIGITIMES企劃,“醫療穿戴裝置不看淡 植入式醫材前景尤佳”, DIGITIMES物聯網,2016.
[16] Chengwei Wang, Kun Fu, Jiaqi Dai, Steven D. Lacey, Yonggang Yao, Glenn Pastel, Lisha Xu, Jianhua Zhang, Liangbing Hu, “Inverted Battery Design as Ion Generator for Interfacing with Biosystems”, Nature Communications, 8, pp. 1-7, 2017.
[17] Xiaoteng Jia, Caiyun Wang, Vijayaraghavan Ranganathan, Bradley Napier, Changchun Yu, Yunfeng Chao, Maria Forsyth, Fiorenzo G. Omenetto, Douglas R. MacFarlane, Gordon G. Wallace, “A Biodegradable Thin-Film Magnesium Primary Battery Using Silk Fibroin-Ionic Liquid Polymer Electrolyte”, ACS Energy Letters, 2(4), pp. 831-836.
[18] Bronwyn Laycocka, Melissa Nikolić, John M. Colwell, Emilie Gauthier, Peter Halleya, Steven Bottle, Graeme George, “Lifetime Prediction of Biodegradable Polymers”, Progress in Polymer Science, 71, pp. 144-189, 2017.
[19] Dawnielle Farrar, James E. West, Ilene J. Busch-Vishniac, Seungju M. Yua, “Fabrication of Polypeptide-Based Piezoelectric Composite Polymer Film”, Scripta Materialia, 59, pp.1051-1054, 2008.
[20] Xiao-Xiao He, Jie Zheng, Gui-Feng Yu, Ming-Hao You, Miao Yu†§, Xin Ning, Yun-Ze Long, “Near-Field Electrospinning: Progress and Applications”, The Journal of Physical Chemistry C, 121 (16), pp. 8663-8678, 2017.
[21] Zheng-Ming Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, “A Review on Polymer Nanofibers by Electrospinning and Their Applications In Nanocomposites”, Composites Science and Technology, 63, pp. 2223-2253, 2003.
[22] Arthur Ballato, “Piezoelectricity: History and New Thrusts”, 1996 IEEE Ultrasonic Symposium, 1, pp. 575-583, 1996.
[23] Behzad Mohammadi, Ali Akbar Yousefi, Samad Moemen Bellah, “Effect of Tensile Strain Rate and Elongation on Crystalline Structure and Piezoelectric Properties of PVDF Thin Films”, Polymer Testing, 26, pp. 42-50, 2007.
[24] Julius Cohen, Seymour Edelman, “Piezoelectric Effect In Oriented Polyvinylchloride and Polyvinylflouride”, Journal of Applied Physics, 42, pp. 3072, 1971.
[25] Takeo Furukawa, Eiichi Fukada, “Piezoelectric Relaxation In Poly(γ-benzyl-glutamate)”, Journal of Polymer Science Part B : Polymer Physics, 14 (11), pp. 1979-2010, 1976.
[26] Eiichi Fukada, “Piezoelectric Properties of Biological Polymers”, Quarterly Reviews of Biophysics, 16 (1), pp. 59-87, 1983.
[27] B Satish, K Sridevi, M S Vijaya, “Study of Piezoelectric and Dielectric Properties of Ferroelectric PZT-Polymer Composites Prepared by Hot-Press Technique”, Journal of Physics D: Applied Physics, 35, pp. 2048-2050, 2002.
[28] Xiao-fang Liu, Chuan-xi Xiong, Hua-jun Sunb, Li-jie Donga, Ri li, Yang Liu, “Piezoelectric and Dielectric Properties of PZT/PVC and Graphite Doped with PZT/PVC Composites”, Materials Science and Engineering B, 127, pp. 261-266, 2006.
[29] Rinaldo Gregorio Jr., “Determination of The α, β, and γ Crystalline Phases of Poly (Vinylidene Fluoride) Films Prepared at Different Conditions”, Journal of Applied Polymer Science, 100 (4), pp. 3272-3279, 2006.
[30] J. F. Nye, “Physical Properties of Crystals: Their Representation By Tensors and Matrices”, Oxford University Press, pp.68-82, 1964.
[31] Heiji Kawai, “The Piezoelectricity of Poly (Vinylidene Fluoride)”, Japanese Journal of Applied Physics, 8, pp. 975-976, 1969.
[32] Wu Aik Yee, Masaya Kotaki, Ye Liu, Xuehong Lu, “Morphology, Polymorphism Behavior and Molecular Orientation of Electrospun Poly (Vinylidene Fluoride) Fibers”, Polymer, 48, pp. 512-521, 2007.
[33] Rinaldo Gregorio, Jr., Daniel Sousa Borges, “Effect of Crystallization Rate on The Formation of The Polymorphs of Solution Cast Poly(Vinylidene Fluoride),” Polymer, 49(18), pp. 4009-4016, 2008.
[34] P. Sajkiewicz, A. Wasiak, Z. Goclowski, “Phase Transitions During Stretching of Poly(Vinylidene Fluoride),” European Polymer Journal,35(3), pp. 423-429, 1999.
[35] A. Ferreira P. Costa H. Carvalho J. M. Nobrega V. Sencadas Senentxu Lanceros-Mendez, “Extrusion of Poly(Vinylidene Fluoride) Filaments: Effect of the Processing Conditions and Conductive Inner Core on The Electroactive Phase Content and Mechanical Properties,” Journal of Polymer Research, 18(6), pp. 1653-1658, 2011.
[36] D. Geiss, R. Danz, A. Janke and W. Kunstler, “Structural Changes in Poly (Vinylidene Fluoride) by Electric Fields,” IEEE Transactions on Electrical Insulation, EI-22(3), pp. 347-351, 1987.
[37] J. S. Andrew and D. R. Clarke, “Effect of Electrospinning on the Ferroelectric Phase Content of Polyvinylidene Difluoride Fibers,” Langmuir: The ACS Journal of Surfaces and Colloids, 24(3), pp. 670-672, 2008.
[38] Kavitha Chelakara Satyanarayana, Kim Bolton, “Molecular Dynamics Simulations of α- to β-Poly(Vinylidene Fluoride) Phase Change by Stretching and Poling,” Polymer, 53(14), pp. 2927-2934, 2012.
[39] Qi Xie, Kai Ke, Wen-Rou Jiang, Wei Yang, Zheng-Ying Liu, Bang-Hu Xie, Ming-Bo Yang, “Role of Poly (Lactic Acid) In The Phase Transition of Poly(Vinylidene Fluoride) Under Uniaxial Stretching,” Journal of Applied Polymer Science, 129(4), pp. 1686-1696, 2013.
[40] Fei Ai, Hong Li, Quan Wang, Wang Zhang Yuan, Xiaoyong Chen, Libin Yang, Junhong Zhao, Yongming Zhang, “Surface Characteristics and Blood Compatibility of PVDF/PMMA Membranes,” Journal of Material Science, 47(12), pp. 5030-5040, 2012.
[41] Mengyuan Li, Natalie Stingelin, Jasper J. Michels, Mark-Jan Spijkman, Kamal Asadi, Kirill Feldman, Paul W. M. Blom, and Dago M. de Leeuw, “Ferroelectric Phase Diagram of PVDF:PMMA,” Macromolecules, 45(18), pp. 7477-7485, 2012.
[42] 牛小玲,劉鵬,劉衛國,惠迎雪,” PMMA/PVDF共混對PVDF的β相構型影響的研究”,高分子通報,3,pp. 31-34,2010.
[43] Hong-Feng Guo, Zhen-Sheng Li, Shi-Wu Dong, Wei-Jun Chen, Ling Deng, Yu-Fei Wang, Da-Jun Ying, “Piezoelectric PU/PVDF Electrospun Scaffolds for Wound Healing Applications,” Colloids and Surfaces B, Biointerfaces, 96, pp. 29-36, 2012.
[44] 郭紹偉,盧依宣,“聚酪胺酸和聚(4-乙烯基吡啶)之相容性與螺旋性胜肽二級結構對分散捲曲和鏈聚集行為之影響”,June,2012.
[45] Alan G. Walton, John Blackwell, “Biopolymers”, Academic press, New York, pp. 181, 1973.
[46] A. Gitsas, G. Floudas, M. Mondeshki, H. W. Spiess, T. Aliferis, H. Iatrou, and N. Hadjichristidis, “Control of Peptide Secondary Structure and Dynamics in Poly(γ-Benzyl-L-Glutamate)-B-Polyalanine Peptides”, Macromolecules 2008, 41, 8072-8080.
[47] Fritz Vollrath, “Strength and Structure of Spiders’ Silks”, Reviews in Molecular Biotechnology, 74, pp. 67-83, 2000.
[48] Michael B. Hinman, Justin A. Jones and Randolph V. Lewis, “Synthetic Spider Silk: A Modular Fiber”, Trends in Biotechnology, 18 (9), pp. 374-379, 2000.
[49] Erik J. Spek, Huai-Chuan Wu and Neville R. Kallenbach, “The Role of Alanine Sequences in Forming β-Sheets of Spider Dragline Silk”, Journal of The America Chemical society, 119, pp. 5053-5054, 1997.
[50] David Byrom, “Biomaterials: Novel Materials from Biological Sources”, Palgrave Macmillan UK, 1991.
[51] Philip M. Cunniff, Stephen A. Fossey, Margaret A. Auerbach, John W. Song, David L. Kaplan, W. Wade Adams, Ronald K. Eby, David Mahoney, Deborah L. Vezie, “Mechanical and Thermal Properties of Dragline Silk from The Spider Nephila Clavipes”, Polymers for Advanced Technologies, 5 (8), pp. 401-410, 1994.
[52] Kristin Schacht and Thomas Scheibel, “Processing of Recombinant Spider Silk Proteins into Tailor-Made Materials for Biomaterials Applications”, Current Opinion in Biotechnology, 29, pp. 62-69, 2017.
[53] Peter Domachuk, Konstantinos Tsioris, Fiorenzo G. Omenetto, and David L. Kaplan, “Bio-microfluidics: Biomaterials and Biomimetic Designs”, Advanced Materials, 22, pp. 249-260, 2010.
[54] Joon Y. Lee, Paul C. Painter, Michael M. Coleman, “Hydrogen bonding in polymer blends. 4. Blends involving polymers containing methacrylic acid and vinylpyridine groups”, Macromolecules, 21, pp. 954-960, 1988.
[55] T. Jaworek, D. Neher, G. Wegner, R. H. Wieringa, A. J. Schouten, “Electromechanical Properties of An Ultrathin Layer of Directionally Aligned Helical Polypeptides”, Science, 279 (5347), pp. 57-60, 1998.
[56] P. Papadopoulos and G. Floudas, H.-A. Klok, I. Schnell and T. Pakula, “Self-Assembly and Dynamics of Poly(γ-Benzyl-l-Glutamate) Peptides”, Biomacromolecules, 2004, 5 (1), pp. 81-91.
[57] Yonghwan Hwang, Yub Je, Dawnielle Farrar, James E. West, S. Michael Yu, Wonkyu Moon, “Piezoelectric Properties of Polypeptide-PMMA Molecular Composites Fabricated by Contact Charging,” Polymer, 52, pp. 2723-2728, 2011.
[58] Rajeswari Ravichandran, Subramanian Sundarrajan, Jayarama Reddy Venugopal, Shayanti Mukherjee, Seeram Ramakrishna, “Advances in Polymeric Systems for Tissue Engineering and Biomedical Applications”, Macromolecular Bioscience, 12 (3), pp. 286-311, 2012.
[59] Shu-Ting Li, Yung-Chih Lin, Shiao-Wei Kuo, Wei-Tsung Chuang and Jin-Long Hong, “Aggregation Induced Emission Enhancement in Relation to The Secondary Structures of Poly(G-Benzyl-L-Glutamate) Containing A Fluorescent Tetrapheny lthiophene Moiety”, Polymer Chemistry, 3, pp. 2393-2402, 2012.
[60] Kazuma Tsuboi, Erika Marcelletti, Hidetoshi Matsumoto, Minoru Ashizawa, Mie Minagawa, Hidemine Furuya, Akihiko Tanioka1 and Akihiro Abe, “Preparation of Poly(C-Benzyl-L-Glutamate) Nanofibers by Electrospinning from Isotropic and Biphasic Liquid Crystal Solutions”, Polymer Journal, 44, pp. 360-365, 2012.
[61] Ken-Ichi Minato, Kousaku Ohkawa, Hiroyuki Yamamoto, “Chain Conformations of Poly(γ-Benzyl-L-Glutamate) Pre and Post An Electrospinning Process”, Macromlecular Bioscience, 6 (7), pp.487-495, 2006.
[62] Lijuan Liang, Tomoo Fukushima, Kazuki Nakamura, Sei Uemura, Toshihide Kamata and Norihisa Kobayashi, “Temperature-Dependent Characteristics of Nonvolatile Transistor Memory Based on A Polypeptide”, Journal of Materials Chemistry C, 2, pp. 879-883, 2014.
[63] Timothy J. Deming, “Polypeptide Materials: New Synthetic Methods and Applications,” Advanced Materials, 9, pp. 299-311, 1997.
[64] Geoffrey Taylor, “Electrically Driven jets”, Proceedings of The Royal Society A: Mathematical and Physical and Engineering Sciences, 313, pp. 453-475, 1969.
[65] Peter KBaumgarten, “Electrostatic Spinning of Acrylic Microfibers”, Journal of Colloid and Interface Science, 36 (1), pp. 71-79, 1971.
[66] Zhizhen Zhao, Jingqing Li, Xiaoyan Yuan, Xiang Li, Yuanyuan Zhang, Jing Sheng, “Preparation and Properties of Electrospun Poly(Vinylidene Fluoride) Membranes”, Journal of Applied Polymer Science, 97 (2), pp. 466-474, 2005.
[67] Xi Ren and Yuris Dzenis, “Novel Continuous Poly(Vinylidene Fluoride) Nanofibers”, Materials Research Society Symposium Proceedings, 920, pp. 55, 2006.
[68] Chieh Chang, Kevin Limkrailassiri, and Liwei Lin, “Continuous Near-Field Electrospinning for Large Area Deposition of Orderly Nanofiber Patterns”, Applied Physics Letters, 93, 2008.
[69] Daoheng Sun, Chieh Chang, Sha Li and Liwei Lin, “Near-Field Electrospinning”, Nano Letters, 6 (4), pp. 839-842, 2006.
[70] Chieh Chang, Van H. Tran, Junbo Wang, Yiin-Kuen Fuh and Liwei Lin, “A Direct-Write Piezoelectric PVDF Nanogenerator”, Nano Letters, pp. 726-731, 2010.
[71] Vollrath, F. and D. Porter, “Spider Silk As Archetypal Protein Elastomer”, Soft Matter, 2 (5), pp. 377-385, 2006.
[72] Fritz Vollrath, David P. Knight, “Liquid Crystalline Spinning of Spider Silk”, Nature, 410, pp. 541-548, 2001.
[73] Z. H. Liu, C.T. Pan, L. W. Lin, J. C. Huang, and Z. Y. Ou, “Direct-Write PVDF Nonwoven Fiber Fabrics Energy Harvesters Via The Hollow Cylindrical Near-Field Electrospinning Process”, Smart Materials and Structures, 23, pp. 1-11, 2013.
[74] H. Fong, I. Chun, D.H. Reneker, “Beaded Nanofibers Formed During Electrospinning”, Polymer, 40, pp. 4585-4592, 1999.
[75] Shiao-Wei Kuo, Chi-Jen Chen, “Using Hydrogen-Bonding Interactions To Control the Peptide Secondary Structures and Miscibility Behavior of Poly(L-Glutamate)s with Phenolic Resin”, Macromolecules, 44, pp. 7315-7326, 2011.
[76] J. W. Barlow, D. R. Paul, “Mechanical Compatibilization of Immiscible Blends”, 24 (8), pp. 525-534, 1984.
[77] D. R. Paul, S. Newman, “Polymer blends”, Academic Press, New York, 1978.


[78] Michael M. Coleman, Paul C. Painter, John F. Graf, “Specific Interactions and The Miscibility of Polymer Blends”, CRC Press, Florida, 1995.
[79] Steven W. Cranford, Anna Tarakanova, Nicola M. Pugno, Markus J. Buehler, “Nonlinear Material Behaviour of Spider Silk Yields Robust Webs”, Nature, 482, pp. 72-78, 2012.
[80] I. Agnarsson, C. Boutry, T.A. Blackledge, Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 2008, 309A(8), 494-504.
[81] Ingi Agnarsson, Matjaž Kuntner, Todd A. Blackledge, “Bioprospecting Finds the Toughest Biological Material:Extraordinary Silk from a Giant Riverine Orb Spider”, PloS One 5 (9), e11234, 2010.
[82] Brook O. Swanson, Todd A. Blackledge, Adam P. Summers, and Cheryl Y. Hayashi,” Spider Dragline Silk : Correlated and Mosaic Evolution In High-Performance Biological Materials”, Evolution, 60(12), pp. 2539-2551, 2006.
[83] Asrar, J. and J.C. Hill, Biosynthetic Processes for Linear Polymers. Journal of Applied Polymer Science, 83(3), pp. 457-483, 2010.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.66.206
論文開放下載的時間是 校外不公開

Your IP address is 3.16.66.206
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code