Responsive image
博碩士論文 etd-0905101-123517 詳細資訊
Title page for etd-0905101-123517
論文名稱
Title
管材液壓鼓脹成形之力學解析
Analysis of Hydraulic Bulge Forming of Tubes
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-07-10
繳交日期
Date of Submission
2001-09-05
關鍵字
Keywords
鼓脹、有限差分法、管材液壓成形
tube hydroforming, bulge, finite difference method
統計
Statistics
本論文已被瀏覽 5655 次,被下載 3617
The thesis/dissertation has been browsed 5655 times, has been downloaded 3617 times.
中文摘要
本研究提出一套數學模式,將成形中管材外形視為橢圓薄殼曲面,藉以瞭解在管材液壓鼓脹成形過程中,薄管於開模下塑性變形之行為。此數學模式建構為,在自由鼓脹區考量管材為非均一變薄,而管材與模具間之磨擦介面可分為黏滯和滑動兩種解析模式。在黏滯模式下,一旦有管材元素接觸模具後,元素並不會發生滑移現象。然而,在滑動模式下,其將會隨成形過程而持續變形。由此數學模式探討內部壓力與鼓脹高度之關係。而各種加工因子如入模半徑、管之厚度、管長度對管直徑之比、材料性質等等對成形壓力與產品厚度分佈之影響,亦會在本研究中有系統地討論。
Abstract
A mathematical model considering ellipsoidal surface for the forming tube is proposed in this work to examine the plastic deformation behavior of a thin-walled tube during tube bulge hydroforming process in an open die. In the formulation of this mathematical model, nonuniform thinning in the free bulged region and sticking and sliding friction modes between the tube and die are considered. In the sticking friction mode, the elements in contact with the die do not move or slide after contact with the die. Whereas, in the sliding friction mode, the elements in contact with the die will continue to deform plastically in the subsequent forming process. The relationship between the internal pressure and the bulge height of the tube is examined. The effects of various forming parameters such as the die entry radius, the initial thickness, the length/diameter ratio, material property, etc., upon the forming pressure and the thickness distribution of products were discussed systematically.
目次 Table of Contents
論文摘要 Ⅰ
目錄 II
圖表索引 Ⅳ
符號說明 Ⅵ
第一章 緒論 1
1-1 前言 1
1-2 管材液壓成形製程簡介 2
1-3 影響管材液壓成形之加工因子 3
1-4 管材液壓成形之文獻回顧 4
1-5 本研究之目的 6
1-6 本論文之架構 6
第二章 管材液壓鼓脹成形數學模式 8
2-1 解析模式之基本假設 8
2-1-1 座標系之定義 9
2-1-2 基本組成方程式 9
2-2 管材鼓脹成形之解析模式 11
2-2-1 引言 11
2-2-2 黏滯模式 11
2-2-3 滑動模式 18
第三章 解析結果與討論 33
3-1 使用Deform之有限元素模擬 33
3-1-1 Deform 2D之分析模式 34
3-2 解析結果與討論 35
第四章 結論 53
4-1 研究成果之概要 53
4-2 今後研究之課題 54
參考文獻 55
附錄A - 橢圓球薄殼曲面參數之推導 58
附錄B - 橢圓曲率半徑之推導 60
附錄C - 邊緣處厚度之推導 62


參考文獻 References
[1] 日本塑性加工學會, “Хшみйиルみт⑦ヲ—管材ソ二次加工シ製品設計—,” ヵ①Ю社, p.65-90 (1992).
[2] 邱先拿, “管材液壓成形技術發展動向,” 金屬工業, Vol.34, No.2, p.74 (2000).
[3] 姚創文, “車輛工業結構件一體化與輕量化之新趨勢- 管件液壓成形技術之簡介及應用,” 金屬工業, Vol.34, No.1, p.42 (2000).
[4] M. Ahmetoglu, and T. Altan, “Tube hydroforming :state-of-the –art and future trends,” J. Mater. Process. Technol., Vol.98, p.25 (2000).
[5] F. Dohmann, and Ch. Hartl, “Tube hydorforming research and practical application,” J. Mater. Process. Technol., Vol.71, p.187 (1997).
[6] D. M. Woo, ”The analysis of axisymmetric forming of sheet metal and the hydrostatic bulging process,” Int. J. Mech. Sci., Vol.6, p.303 (1964).
[7] S. Fuchizawa, and H. Takeyama, “Study on the bulge forming of thin walled cylinder (1st Report) analysis by the logarithmic total strain theory,” J. Japan Soc. Precision Engng., Vol.37, No.8, p.565 (1971).
[8] S. Fuchizawa, and H. Takeyama, “Study on the bulge forming of thin walled cylinder (2nd Report) analysis by the strain incremental theory,” J. Japan Soc. Precision Engng., Vol.44, No.12, p.1482 (1978).
[9] S. Fuchizawa, and M. Narazaki, “Analysis of bulge deformation of thin tube with cylindrical die-hydrostatic tube bulging with closed die Ⅰ,” Journal of JSTP , Vol.30, No.336, p.116 (1989-1).
[10] S. Fuchizawa, and M. Narazaki, “Bulge deformation of thin copper tube with cylindrical die-hydrostatic tube bulging with closed die Ⅱ,” Journal of JSTP , Vol.30, No.339, p.520 (1989-4).
[11] S. Fuchizawa, and M. Narazaki, “Bulge test for determining stress-strain characteristics of thin tubes,” Advanced Technology of plasticity,4th ICTP, Beijing, China, Vol.1,p.488, September 5-9, 1993.
[12] T. Sokolowski, K. Gerke, M. Ahmetoglu, and T. Altan, “Evaluation of tube formability and material characteristics : hydraulic bulge testing of tubes,” J. Mater. Process. Technol. Vol.98, p.34 (2000).
[13] B. Carleer, G. van der Kevie, L. de Winter,B. van Veldhuizen, “Analysis of the effect of material properties on the hydroforming process of the tubes,” J. Mater. Process. Technol. Vol.104, p.158 (2000).
[14] D. M. Woo, and A. C. Lua, ”Plastic deformation of ansiotropic tubes in hydraulic bulging,” J. Mater. Process. Technol. Vol.100, p.421 (1978).
[15] S. Fuchizawa, “Influence of plastic anisotropy on deformation of thin-walled tubes in bulge forming,” Advanced Technology of plasticity,2nd ICTP, , Stuttgart ,Vol.2,p.727, 1987.
[16] D. M. Woo, ”Tube-Bulging under internal pressure and axial force” Trans. ASME. 95, Ser. H, 4, p.219 (1973).
[17] S. Fuchizawa, A. Shirayori, H. Yamamoto, and M. Narazaki, “Bulge forming of thin copper tube by axial compression and internal pressure,” Journal of JSTP , Vol.35, No.398, p.251 (1994-3).
[18] S. Fuchizawa, M. Narazaki, and A. Shirayori, “Bulge forming of aluminum alloy tubes by internal pressure and axial compression,” Advanced Technology of plasticity,5th ICTP, Columbus, Ohio, USA, Vol.1, p.497, October7-10, 1996.
[19] S. Fuchizawa, “Influence of strain-hardening exponent on the deformation of thin-walled tube of tube of finite length subjected to hydrostatic internal pressure,” Advanced Technology of plasticity,1th ICTP, , Tokyo ,Vol.1,p.297, 1984.
[20] Nader Asnafi, “Analytical modelling of tube hydroforming,” Thin-Walled Structures, Vol.34, p.295, (1999).
[21] J. K. Banerjee, “Limiting deformations in bulge forming of thin cylinders of fixed length,” Int. J. Mech. Sci., Vol.17, p.659 (1975).
[22] T. Hiroi, and H. Nishimura, “Influence of surface defects on bulge-forming limit of aluminum thin-walled tube,” Journal of JSTP , Vol.37, No.430, p.1193 (1996-11).
[23] S. Tanaka, Y. Yoshitomi and S. Iwakura, “Numerical analysis of hydraulic forming by rigid plastics finite element method,” Journal of JSTP , Vol.37, No.426, p.729 (1996-7).
[24] S. Fuchizawa, K. Kitamura, and M. Narazaki, “Deformation of aluminum alloy tubes under forming of T-fitting,” Journal of JSTP , Vol.36, No.408, p.80 (1995-1).
[25] S. Mori, K. Manabe and H. Nishimura, “Hydrostatics bulge forming of clad thin-walled tubes,” Journal of JSTP , Vol.30, No.339, p.555 (1989-4).
[26] E. Chater, and K. W. Neale, “Large strain inelastic behaviour of cylindrical tube,” Int. J. Solids Structures, Vol.19, No8, p.709 (1983).
[27] Yeong-Maw Hwang, Jen-Shin Yang, Tsung-Chen, Jacob C. Huang, and Wun-Uven Wu, “Analysis of superplastic blow-forming in conical closed die,” Int. J. Mech. Sci., Vol.40, No.9, p.867 (1998).
[28] H. H. Bender, “Pressure vessel design handbook,” Van Nostrand Reinhold Press, p.35-56, (1981).
[29] John F. Harvey, “Theory and design of pressure vessels,” Van Nostrand Reinhold Press, p33-68 (1991).
[30] Garret J. Etgen, “Calculus-one and several variables,” John Wiley & Sons,inc (1990)
[31] Curtis F. Gerald, and Patrick O. Wheatley, “Applied numerical analysis,” Addison-Wesley Pub. Co. (1984).
[32] Michael Metcalf, John Reid ,”Fortran 90 explained,” Oxford University Press (1990).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code