Responsive image
博碩士論文 etd-0905104-121321 詳細資訊
Title page for etd-0905104-121321
論文名稱
Title
嘉德麗雅蘭花中ACC氧化酶基因之選殖與分析
Cloning and Analysis of the Genes Encoding 1-Aminocyclopropane-1-Carboxylate Oxidase in Cattleya
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-15
繳交日期
Date of Submission
2004-09-05
關鍵字
Keywords
乙烯、嘉德麗雅蘭、ACC氧化酶
ACC oxidase, cattleya, ethylene
統計
Statistics
本論文已被瀏覽 5681 次,被下載 5011
The thesis/dissertation has been browsed 5681 times, has been downloaded 5011 times.
中文摘要
乙烯屬於植物賀爾蒙的一種,它調控的範圍包括植物從發芽到老化的所有生理過程,也產生於許多植物對於外在環境逆境的反應中。
本實驗係探討嘉德麗雅蘭 (Cattleya bicolor) 中參與乙烯合成途徑之ACC氧化酶 (ACC oxidase) 。利用RACE (Rapid amplification of cDNA ends) 技術放大目標基因終端片段。蘭花ACC oxidase選殖序列之分析發現,在3’端非轉錄區域 (3’-untranslated region, 3’-UTR) 之讀序結果有些微不同,推測是因ACC oxidase各基因家族成員序列近似,惟其常於3’-UTR有變異之緣故。利用軟體將cDNA序列之開放讀架 (open reading frame, ORF) 轉譯成胺基酸並經比對後,發現此胺基酸序列與其他物種所具有之序列相似;經基因組DNA之比較顯示C. bicolor的ACC oxidase基因組結構在內含子 (intron) 與外顯子 (exon) 數目上與其他物種並不相同。另外,藉由分析胺基酸序列,預測蛋白質之表現位置應是在細胞質中。
本研究進行至此,已完成嘉德麗雅蘭花 (C. bicolor) 中ACC oxidase基因選殖,並對之進行初步探討。期望將來能利用分子生物學方法與植物轉殖技術,從植物之遺傳物質著手以抑制乙烯生成,最終使花朵壽命延長,進而增加花卉於市場之競爭力。
Abstract
Ethylene, a plant hormone, plays an essential role in many aspects about plant development, growth, ripening, and senescence. In addition, it also regulates several responses when plants suffer stress from drought, flood, herbivore bites, wound, etc. ACC synthase and ACC oxidase belong to two multigene families. In this study, PCR (polymerase chain reaction) and RACE (rapid amplification of cDNA ends) methods were used to amplify the ACC oxidase sequences in Cattleya bicolor orchid flower. The results show that there exists differences in the 3’-UTR (untranslated region) of orchid gene sequences. Compare the ACC oxidase sequences, including the cDNA ORF (open reading frame) sequences and the amino acid sequences, of several different species, the sequence similarity among the three Laeliinae orchids, namely C.bicolor, C. intermedia, and Laelia anceps, is the highest. The similarity of cDNA ORF sequences and amino acid sequences between orchids and the other plants, such as rice, apple and torenia, is comparatively lower. It was proposed that the protein located in cytoplasma (or in mitochondrial matrix space), agrees with the result from analysis of amino acid hydrophilicity prediction.
The ultimate goal of this study is to postpone the flower senescence by the way of plant transfection. In the present findings, it only deals with the cloning and analysis of the ACC oxidase genes in C. bicolor.
目次 Table of Contents
致謝…………………………………………………………………… …I
中文摘要……………………………………………………………… ..II
英文摘要………………………………………………………………..III
目錄……………………………………………………………………..IV
圖表目錄………………………………………………………………..VI
前言………………………………………………………………………1
一、乙烯………………………………………………………………………………1
二、ACC氧化酶特性與基因的研究………………………………………………..9
三、研究目的………………………………………………………………………..13
材料與方法……………………………………………………………..15
一、研究材料…………………………………………………………………………15
(一)嘉德麗雅蘭………………………………………………………………………………………15
(二)大腸桿菌 (Escherichia coli) ……………………………………………………………………15
二、研究方法…………………………………………………………………………17
(一)總量RNA萃取與cDNA合成…………………………………………………………………...17
(二)基因組DNA萃取……………………………………………………………………………….18
(三)聚合酶連鎖反應(polymerase chain reaction, PCR)………………………………………….19.
(四)瓊脂膠體電泳與回收…………………………………………………………………………...22
(五)細菌值體之利用…………………………………………………………………………………26
(六)勝任細胞製備與大腸桿菌轉形作用……………………………………………………………28
(七)質體抽取…………………………………………………………………………………………29
(八)接合酶反應……………………………………………………………………………………....30
結果與討論……………………………………………………………..31
一、ACC氧化酶cDNA序列之分析…………………….……………………….…31
(一)定序結果…………………………………………………………………………………………31
(二)相似度比對………………………………………………………………………………………32
(三)胺基酸序列預測結果……………………………………………………………………………39
二、ACC氧化酶基因組DNA序列之分析…………………………………………..45
結論……………………………………………………………………..49
參考文獻………………………………………………………………..53
參考文獻 References
石博清 1997. 蘋果1-aminocyclopropane-1-carboxylate氧化酶之結構、功能與穩定性之研究。國立台灣海洋大學水產生物技術研究所碩士學位論文。

周泳杉 1996. 定位基因突變研究蘋果1-aminocyclopropane-1- carboxylate氧化酶亞鐵離子結合位置之特性。國立陽明大學生物化學研究所碩士論文。

Abeles, F. B., Morgen, P. W. and Salveit, M. E. Jr. 1992. Ethylene in plant Biology, 2nd Edition. CA: Academic, San Diego, pp 414

Adams, D. O. and Yang, S. F. 1977. Methionine metabolism in apple tissue: implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol. Suppl. 67: No. 274 (Abstr.)

Adams, D. O. and Yang, S. F. 1979. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76: 170-174

Aida, R., Yoshida, T., Ichimura, K., Goto, R. and Shibata, M. 1998. Extension of flower longevity in transgenic toreniaplants incorporating ACC oxidase transgene. Plant Science 138:91-101

Barden, L. E. and Hanan, J. J. 1972. Effect of ethylene on carnation keeping life. J. Am. Soc. Hort. Sci. 97: 785-788

Barry, C. S., Blume, B., Bouzayen, M., Cooper, W., Hamilton, A. J. and Grierson, D. 1996. Differential expression of the 1-aminocyclo- propane-1-carboxylate oxidase gene family of tomato. Plant J. 9: 525-535

Beyer, E. M. Jr. 1975. Abscission : the initial effect of ethylene is in the leaf blade. Plant Physiol. 55: 322-327

Biale, J. B. and Young, R. E. 1981. Respiration and ripening in fruits ---retrospect and prospect. In Recent Advances in the Biochemistry of Fruits and Vegetables. (Friend, J.; Rhodes, M. J. C.; eds) Academic Press, London, pp 1-39

Bleecker, A. and Kende, H. 2000. Ethylene: A gaseous signal Molecule in plants. Annu. Rev. Cell Biol. 16: 1-18

Bleeker, A. 2001. Ethylene. Current Biology 11: R952

Blume, B., Barry, C. S., Hamilton, A. J., Bouzayen, M. and Grierson, D. 1997. Identification of transposon-like elements in non-coding regions of tomato ACC oxidase genes. Mol. Gen. Genet. 254: 297-303

Boller, T. and Kende, H. 1980. Regulation of wound ethylene synthesis in plants. Nature 286: 259-260

Borochov, A. and Woodson, R. H. 1989. Physiology and biochemistry of flower petal senescence. Hort. Rev. 11: 15-43

Britsch, L. and Grisebach, H. 1986. Purification and characterization of (2S)-flavanone-3-hydroxylase from Petunia hybrida. Eur. J. Biochem. 156: 569-577

Burg, S. P. 1962. The physiology of ethylene formation. Annu. Rev. Plant Physiol. 13: 265-302

Chang, C., Kwok, S. F., Bleecker, A. B. and Meyerowitz, E. M. 1993. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262: 539-544.

Cormack, R.S. and Somssich, I. E. 1997. Rapid amplification of genomic ends (RAGE) as a simple method to clone flanking genomic DNA. Gene 194: 273-276

Dong, J. G., Fernandez-Maculet, J. C. and Yang, S. F. 1992. Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc. Natl. Acad. Sci. USA 89: 9789-9793

Ecker, J. R. 1995. The ethylene signal transduction pathway in plants. Science 269: 667-675

Gane, R. 1934. Production of ethylene by some fruits. Nature 134: 1008

Gilissen, L. J. W. 1977. Style-controlled wilting of the flower. Planta 133: 275-280

Grierson, D., Slater, A., Spiers, J. and Tucker, G. A. 1985. The appearance of polygalacturonase mRNA in tomatoes: one of a series of changes in gene expression during development and ripening. Planta 163: 263-271

Guy, M. and Kende, H. 1984. Conversion of 1-aminocyclopropane-1- carboxylic acid to ethylene by isolated vacuoles of Pisum sativum L.. Planta 160: 281-287

Hamilton, A. J., Bouzayen, M. and Grierson, D. 1991. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc. Natl. Acad. Sci. USA 88: 7434-7437

Hamilton, A. J., Lycett, G. W. and Grierson, D. 1990. Antisense gene that inhibites synthesis of the hormone ethylene in transgenic plants. Nature 346: 284-287

Hiroaki, I., Nojima, H. and Okayama, H. 1990. High efficiency transformation of Escherichia coli with plasmids. Gene 96: 23-28

Hoffman, N. E., Yang, S. F., Ichiara, A. and Sakamura, S. 1982. Stereospecific conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene by plant tissues. Conversion of stereoisomers of 1-aminocyclopropane-1-carboxylic acid to 1-butent. Plant Physiol. 70: 195-199

Hopkins, W. G. 1999. Introduction to Plant Physiology, 2nd Edition. John Wiley & Sons, Inc., pp 329-330, 354-355.

Imaseki, H. and Watanabe, A. 1978. Inhibition of ethylene production by osmotic shock. Further evidence for membrane control of ethylene production. Plant Cell Physiol. 19: 345-348

Johnson, P. R. and Ecker, J. R. 1998. The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet. 32: 227-54

Jones, M. L. 2002. Ethylene responsiveness on carnation styles is associated with stigma receptivity. Sex Plant Repord. 15: 107-112

Jones, M. L. and Woodson, W. R. 1997. Pollination-induced ethylene in carnation. Role of stylar ethylene in corolla senescence. Plant Physiol. 115: 205-212

Kao, C. H. and Yang, S. F. 1982. Light inhibition of the conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene in leaves is mediated through carbon dioxide. Planta 155: 261-266

Kende, H. 1993. Ethylene biosynthesis. Annu. Rev. Plant Physiol. 44: 283-307

Kieber, J. J., Rothenburg, M., Roman, G., Feldman, K. A. and Ecker, J. R. 1993. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell 72: 427-441

Lasserre, E., Bouquin, T., Hernandez, J. A., Bull, J., Pech, J-C. and Balagué, C. 1996. Structure and expression of three genes encoding ACC oxidase homologs from melon (Cucumis melo L.) Mol. Gen. Genet. 251: 81-90

Lay, Y. M., Stean, A. D. and Reid, M. S. 1992. Flower senescence in daylily (Hemerocallis). Physiol. Plant. 86: 308-314

Lieberman, M., Kunishi, A. T., Mapson, L. W. and Wardale, D. A. 1966. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol. 41: 376-382

Liu, Y., Hoffman, N. E. and Yang, S. F. 1985. Promotion by ethylene of the capacity to convert 1-aminocyclopropane-1-carboxylic acid to ethylene in preclimacteric tomato and cantaloupe fruit. Plant Physiol. 59: 591-593

Mayak, S., Legge, R. L. and Thompson, J. E. 1981. Ethylene formation from 1-aminocyclopropane-1-carboxylic acid by microsomal membranes from senescing carnation flowers. Planta 153: 49-55

McMurchie, E. J., McGlasson, W. B. and Eaks, I. L. 1972. Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature 237: 235-236

Murr, D. P. and Yang, S. F. 1975. Conversion of 5’-methylthioadenosine to methionine by apple tissue. Phytochemistry 14: 1291-1292

Nadeau, J. A., Zhang, X. S., Nair, H. and O’Neill, S. D. 1993. Temporal and spatial regulation of 1-aminocyclopropane-1carboxylate oxidase in the pollination-induced senescence of orchid flowers. Plant Physiol. 103: 31-39
Nichols, R. 1968. The response of carnations (Dianthus caryophyllus) to ethylene. J. Hort. Sci. 43: 335-349

Oetiker, J. H. and Yang, S. F. 1995. The role of ethylene in fruit ripening. Acta Hort. 398: 167-178

O’Neill, S. D. 1997. Postpollination regulation of flower development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 58: 47-72

O’Neill, S. D. and Nadeau, J. A. 1997. Postpollination flower develop- ment. Hort. Rev. 19: 1-58

O’Neill, S. D., Nadeua, J. A., Zhang, X. S., Bui, A. Q. and Halevy, A. H. 1993. Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5: 419-432

Peiser, G. D., Wang, T. T., Hoffman, N. E., Yang, S. F., Liu, H. W. and Walsh, C. T. 1984. Formation of cyanide from carbon 1 of 1-aminocyclo- propane-1-carboxylic acid during its conversion to ethylene. Proc. Natl. Acad. Sci. USA 81: 3059-3063

Porat, R., Borochov, A. and Halevy, A. H. 1995. Factors affecting ethylene sensitivity in Phalaenopsis orchid flowers. Acta Hort. 420: 39-41

Ramassamy, S., Olmos, E., Bouzayen, M., Pech, J-C. and Latche, A. 1998. 1-aminocyclopropane-1-carboxylate oxidase of apple fruit is periplasmic. J. Exp. Bot. 49: 1909-1915

Ravanel, S., Gakiere, B., Job, D. and Douce, R. 1998. The specific features of methionine biosynthesis and metabolism in plants. Proc. Natl. Acad. Sci. USA 95: 7805-7812

Rocklin, A. M., Tierney, D. L., Kofman, V., Brunhuber, N. M. W., Hoffman, B. M., Christoffersen, R. E., Reich, N. O., Lipscomb, J. D. and Que, L. Jr. 1999. Role of the nonheme Fe(II) center in the biosynthesis of the plant hormone ethylene. Proc. Natl. Acad. Sci. USA 96: 7905-7909

Rohwer, F. and Mader, M. 1981. The role of peroxidase in ethylene formation from 1-aminocyclopropane-1-carboxylic acid. Z. Pflanen- physiol. 140: 363-372

Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory. Pres, New York.

Shibuya, K., Yoshioka, T., Hashiba, T. and Satoh, S. 2000. Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers. J. Exp. Bot. 51: 2067-2073

Slater, A., Maunders, M. J., Edwars, K., Schuch, W. and Grierson, D. 1985. Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol. Biol. 5: 137-147

Spanu, P., Reinhardt, D. and Boller, T. 1991. Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus laevis oocytes. EMBO J. 10: 2007-2013

Stead, A. D. 1992. Pollination-induced flower senescence: a review. Plant Growth Regul 11: 13-20

Tang, X., Gomes, A. M., Bhatia, A. and Woodson, W. R. 1994. Pistil-specific and ethylene-regulated expression of 1-aminocyclopro- pane-1-carboxylate oxidase genes in petunia flowers. Plant Cell 6: 1227-1239

Tang, X., Wang, H., Brandt, A. S. and Woodson, W. R. 1993. Organization and structure of the 1-aminocyclopropane-1-carboxylate oxidase gene family from Petunia hybrida. Plant Mol. Biol. 23: 1151-1164

Tang, X. and Woodson, W. R. 1996. Temporal and spatial expression of 1-aminocyclopropane-1-carboxylate oxidase mRNA following pollina- tion of immature and mature petunia flowers. Plant Physiol. 112: 503-511

Theologis, A. 1995. Ethylene sensors: How perceptive! Science 270: 1774

Ververidis, P. and John, P. 1991. Complete recovery in vitro of ethylene forming enzyme activity. Phytochemistry 30: 725-727

Vioque, A., Albi, M. A. and Vioque, B. 1981. Role of IAA-oxidase in the formation of ethylene from 1-aminocyclopropane-1-carboxylic acid. Phytochemistry 20: 1473-1475

Wang, K. L., Li, H. and Ecker, J. R. 2002. Ethylene biosynthesis and signaling networks. Plant Cell 14: S131-S151

Wang, T. T. and Yang, S. F. 1987. The physiological role of lipoxygenase in ethylene formation from 1-aminocyclopropane-1-carboxylic acid in oat leaves. Planta 170: 190-196

Whitehead, C. S., Halevy, A. H. and Reid, M. S. 1984. Roles of ethylene and 1-aminocyclopropane-1-carboxylic acid in pollination and wound- induced senescence of Petunia hybrida flowers. Physiol. Plant. 61: 643-648

Woltering, E. J. 1990. Interorgan translocation of 1-aminocyclopropane- 1-carboxylic acid and ethylene coordinates senescence in emasculated Cymbidium flowers. Plant Physiol. 92: 873-845

Woltering, E. J., Somhorst, D. and Van der Veer, P. 1995. The role of ethylene in inter-organ signaling during flower senescence. Plant Physiol. 109: 1219-1225

Woodson, W. R. 1994. Molecular biology of flower senescence in carnation. In:Scott RJ, Stead AD (eds) Molecular and cellular aspects of plant reproduction (Society for experimental biology seminar series, Vol 55) Cambridge University Press, pp 255-267

Woodson, W. R., Park, K. Y., Drory, A., Larsen, P. B. and Wang, H. 1992. Expression of ethylene biosynthetic pathway transcripts in senescing carnation flowers. Plant Physiol. 99: 526-532

Yang, S. F. and Hoffman, N. E. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35: 155-189

Yanisch-Perron, C., Vieira, J. and Messing, J. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of M13mp18 and pUC19 vectors. Gene 33: 103-119

Yu, Y. B., Adams, D. O. and Yang, S. F. 1980. Inhibition of ethylene production by 2,4-dinitrophenol and high temperature. Plant Physiol. 66: 286-290

Zarembinski, T. and Theologis, A. 1994. Ethylene biosynthesis and action: a case of conservation. Plant Mol. Biol. 26: 1579-1597

Zhang, Z., Barlow, J. N., Baldwin, J. E. and Schofield, C. J. 1997. Metal-catalyzed oxidation and mutagenesis studies on the iron(II) binding site of 1-amino- cyclepropane-1-carboxylate oxidase. Biochemistry 36: 15999-16007
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code