Responsive image
博碩士論文 etd-0905107-160948 詳細資訊
Title page for etd-0905107-160948
論文名稱
Title
印刷電路板業銅污泥回收銅粉並產製奈米級鐵氧磁體 尖晶石觸媒催化VOCs之研究
Recycling Cu from Cu-sludge Generated in PCB Industry and Manufacturing Nanoscale Ferrite Catalyst to Catalyze VOCs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
222
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-05-11
繳交日期
Date of Submission
2007-09-05
關鍵字
Keywords
異丙醇、揮發性有機物、鐵氧磁體尖晶石觸媒、鐵氧磁體程序、化學置換法、印刷電路板業、銅污泥、資源再利用、酸溶出法
IPA, acid leaching, resourcing, Cu sludge, PCB industry, chemical exchange, ferrite process, spinel catalyst, VOC
統計
Statistics
本論文已被瀏覽 5752 次,被下載 3884
The thesis/dissertation has been browsed 5752 times, has been downloaded 3884 times.
中文摘要
印刷電路板製造業為國內電子工業的兩大零件製造業之一,其重要性不容忽視,但由於其製程中使用大量化學藥劑及特殊原料,因而衍生許多環境問題,尤以含銅之廢水污泥最令人頭痛。雖然此類重金屬污泥可以固化之方式處理,但長時間仍有固化體崩裂致重金屬再溶出之虞。因此,如何將有害重金屬污泥減量、減容,並進一步資源化以回收有價重金屬或作為環境融合之綠色資材,實為國內目前最迫切需要研發與推廣之技術。
本研究針對印刷電路板製造業蝕刻廢液所產生之銅污泥,結合酸溶出法、化學置換法與鐵氧磁體程序,進行含銅污泥無害化及資源化之研究,期建立一處理含銅污泥之最適化條件,不僅可減少廢棄物的產生量及處理成本,並進一步將有害事業廢棄物轉變成具經濟價值的資源化產品,以達到清潔生產及資源再利用之目的。
實驗結果顯示,吾人利用酸溶出法、化學置換法及鐵氧磁體程序成功開發了一套印刷電路板製造業銅污泥資源再利用之技術平台,除了將銅污泥中之銅粉高效率回收外,更進一步利用鐵氧磁體程序額外產製具高經濟價值之奈米級鐵氧磁體尖晶石觸媒(CuFe2O4),不僅將有害事業廢棄物轉變為一般事業廢棄物,解決了廢棄物無處可去之窘境,同時亦讓焚化技術中觸媒之高成本得以降低至幾乎零成本,茲將本研究所得成果摘錄如下:
一、實場污泥特性分析
本研究所採集之實場污泥含水率約為60%;pH值約7.05;燒失量約在23%左右;污泥之粒徑則主要分佈於0.4~200 μm,粒徑中位數D50為25.0 μm;重金屬部分,發現污泥中含Cu、Pb、Cd、Zn、Ni及Cr等重金屬,以Cu含量158,000 mg/kg (乾基)為最多,其餘重金屬含量皆低於105 mg/kg (乾基)。
二、高效率銅粉回收之研究
吾人以酸溶出環境為硫酸濃度=2 N,反應溫度=50℃,溶出時間=60 min之條件將污泥中99%以上之重金屬萃取至液相,且其殘渣符合毒性特性溶出試驗(TCLP)法規限值,可視為一般事業廢棄物予以掩埋;化學置換實驗之最佳操作參數為鐵粉添加量Fe/Cu莫耳比=5.0,pH=2.0,反應溫度=50℃,攪拌速率=200 rpm,經由此條件所置換之銅粉可達95.0%以上;鐵氧磁體程序實驗之最佳操作參數為硫酸亞鐵添加量Fe/Cu莫耳比=10.0,pH=9.0,反應溫度=80℃,曝氣量=3 L/min/每升廢液,反應時間=30 min,於此條件下,不論上澄液或污泥之TCLP方面,所有重金屬濃度均遠低於法規標準,證明鐵氧磁體程序之絕佳處理成效。
三、尖晶石污泥資源化之研究
在鐵氧磁體尖晶石污泥催化揮發性有機物(以異丙醇為例)研究方面,於實驗條件為進流濃度=1700 ppm,空間流速=24000 hr-1,氧氣濃度=21%的焚化系統中,加入鐵氧磁體尖晶石污泥的實驗組在不到200℃的反應溫度下,異丙醇即可達100%的轉化率,而空白試驗(無觸媒)組在500℃的反應溫度下,異丙醇僅有不到75%的轉化率,顯示鐵氧磁體尖晶石污泥具極佳的觸媒潛能。
四、自行合成各種鐵氧磁體作為觸媒催化VOCs之研究
以鐵氧磁體程序製作各種鐵氧磁體尖晶石觸媒研究中,吾人自製的觸媒對異丙醇的轉化率在200℃時皆可達58%以上,五種尖晶石觸媒對異丙醇之轉化率由好至壞排序為Cu-ferrite觸媒>Mn-ferrite觸媒>Ni-ferrite觸媒>Zn-ferrite觸媒>Cr-ferrite觸媒,以Cu-ferrite觸媒之處理效能最佳,在反應溫度為150℃時,約有將近75%的異丙醇被去除;當反應溫度為200℃時,異丙醇轉化率可達100%。
Abstract
Printed Circuit Board (PCB) industry is one of the two major Integrated Circuit (IC) part manufacturing industries in Taiwan, but it derives many environmental problems because large amount of chemicals and special materials are used in its process, especially copper sludge generated from wastewater treatment. Although the heavy metal sludge can be treated by solidification, heavy metals contained in the sludge may still be leached out due to longtime exposure to acid rain. Therefore, there are urgent needs of research and development of technologies regarding how to reduce both quantity and volume of the hazardous heavy metal sludge and how to recycle the valuable heavy metals.
Acid leaching method, chemical exchange method and ferrite process are applied to study how to recycle and stabilize copper sludge of PCB industry. The ultimate goal is to achieve cleaning production and sustainable development by transforming the hazardous waste into valuable byproducts, reducing the amount of the waste and lowering the treatment costs.
Experimental results show that a method is successfully developed to recycle copper from the sludge generated by PCB industry by using the combination of acid leaching, chemical exchange and ferrite process. Via this method, not only is pure copper powder recycled, but highly valuable nano-scaled catalyst-CuFe2O4 is also produced. Hence, the problem that copper sludge has nowhere to go is solved, as well as the high cost of catalyst in catalytic incineration is reduced to nearly zero. The achievements of this study are summarized as follow:
(1) Characteristic analysis of industrial sludge
Water content and pH of the sludge is 60% and 7.05, respectively. The drop in quantity of ignition is 23%. The screening test results show that particle size of the sludge varies from 0.4 μm to 200 μm, with D50 of 25.0 μm. Cu, Pb, Cd, Zn, Ni and Cr are found in the sludge, and the biggest part of heavy metals is Cu, with a concentration of 158,000 mg/kg (dry basis), whereas the other heavy metals are all below 105 mg/kg (dry basis).
(2) Study of recycling of pure copper powder
The optimal operational condition of acid leaching method is that concentration of sulfuric acid is 2.0 N, temperature is 50℃ and treatment time is 60 minutes. Under this operational condition, more than 99% of heavy metals can be extracted to liquid phase and the sediment of treated sludge meet Toxicity Characteristic Leaching Procedure (TCLP) standards and therefore is considered as general industrial waste. The optimal operational condition of chemical exchange method is that molar ratio of Fe/Cu is 5.0, pH is 2.0 and treatment temperature is 50℃. Under this operational condition, more than 95.0% of Cu can be recovered. The optimal operational condition of ferrite process is that Fe/Cu=10.0, pH=9.0, treatment temperature=80℃, aeration rate=3 L/min/per liter waste liquid and reaction time = 30 min. Under this operational condition, TCLP concentrations of all heavy metals of both supernatant and sludge are well below regulatory standards, which proves that ferrite process is very effective.
(3) Resourcing of spinel sludge
In the potential of catalytic incineration of volatile organic compounds test, the sludge generated from ferrite process is used to catalyze the isopropyl alcohol (IPA). The catalyst is replaced by the same volume of glass wool on a reactive bed as a blank. Experimental result shows that the conversion of IPA is only 10% at 200℃ and 75% at 500℃ in the absence of catalyst under the conditions that IPA inlet concentration=1,700 ppm, space velocity=24,000 hr-1, O2 concentration=21%, and relative humidity=19%, which indicates that the destruction of IPA is associated with the consumption of much energy when no catalyst was used. But when ferrite catalyst is applied, IPA is decomposed completely at 200℃, showing that the sludge has great potential of catalyst.
(4) Synthesizing five VOCs catalyzing ferrite catalysts via ferrite process
As to the synthesis of five ferrite catalysts in the laboratory, IPA conversion rate is higher than 58% at 200℃. The sequence of IPA conversion from good to bad is Cu-ferrite catalyst > Mn-ferrite catalyst > Ni-ferrite catalyst > Zn-ferrite catalyst > Cr-ferrite catalyst, where Cu/Fe is most efficiency, with IPA conversion rate of 75% at 150℃ and 100% at 200℃.
目次 Table of Contents
謝誌 I

摘要 II

Abstract V

目錄 VIII

圖目錄 XV

表目錄 XVIII
第一章 序論 1-1
1-1 研究緣起 1-1
1-2 研究目的及內容 1-3
第二章 文獻回顧 2-1
2-1 印刷電路板製造業簡介 2-1
2-2 印刷電路板製造方法及流程概述 2-1
2-3 廢棄物來源、特性及處理方式 2-4
2-3-1 廢棄物概況 2-4
2-3-2 高濃度重金屬廢液及廢水 2-4
2-4 重金屬污泥資源化技術 2-8
2-5 酸溶出法(Acid Leaching) 2-11
2-6 化學置換法(Chemical Exchange) 2-13
2-6-1 化學置換法反應機構 2-16
2-6-2 化學置換法影響因子 2-18
2-7 鐵氧磁體程序(Ferrite Process) 2-26
2-7-1 鐵氧磁體的基本結構與特性 2-30
2-7-2 鐵氧磁體分類 2-34
2-7-3 鐵氧磁體尖晶石合成方法 2-34
2-7-3-1 傳統固態反應法 2-35
2-7-3-2 非傳統合成法 2-35
2-7-3-3 水熱合成法(Hydrothermal Synthesis) 2-36
2-7-4 鐵氧磁體反應機構 2-37
2-7-5 鐵氧磁體程序之影響因子 2-39
2-8 觸媒焚化VOCs之相關研究 2-47
2-8-1 揮發性有機物(VOCs) 2-47
2-8-2 VOCs控制技術 2-48
2-8-3 異丙醇簡介 2-51
2-8-4 觸媒焚化技術 2-51
2-9 鐵氧磁體尖晶石觸媒之應用 2-54
第三章 研究方法 3-1
3-1 研究架構及實驗流程 3-1
3-1-1 研究架構 3-1
3-1-2 實驗流程 3-3
3-1-2-1 污泥樣品及其基本特性分析 3-8
3-1-2-2 高效率銅粉回收之實驗方法 3-13
3-1-2-2-1 酸溶出法實驗設計 3-13
3-1-2-2-2 化學置換法實驗設計 3-14
3-1-2-2-3 鐵氧磁體程序實驗設計 3-16
3-1-2-3 尖晶石污泥資源化之研究 3-18
3-1-2-4 自行合成各種鐵氧磁體作為觸媒催化之研究 3-18
3-2 實驗設備 3-20
3-2-1 實廠污泥處理設備 3-20
3-2-2 觸媒催化VOCs反應設備 3-23
3-2-2-1 異丙醇模擬設備 3-23
3-2-2-2 觸媒反應設備 3-25
3-2-2-3 產物採樣分析設備 3-26
3-2-3 鐵氧磁體尖晶石觸媒合成設備 3-27
3-3 實驗藥品 3-29
3-4 其他分析儀器 3-30
第四章 結果與討論 4-1
4-1 實場污泥基本特性分析 4-1
4-2 高效率銅粉回收 4-5
4-2-1 酸溶出法最佳參數之探討 4-5
4-2-1-1 硫酸濃度對酸溶出法之效應 4-5
4-2-1-2 反應溫度對酸溶出法之效應 4-5
4-2-1-3 溶出時間對酸溶出法之效應 4-5
4-2-1-4 酸溶出試驗殘渣 4-9
4-2-1-5 酸溶出法綜合評論 4-10
4-2-2 化學置換法 4-11
4-2-2-1 化學置換法最佳參數之探討 4-11
4-2-2-1-1 鐵粉添加量對銅粉置換率之效應 4-11
4-2-2-1-2 反應溫度對銅粉置換率之效應 4-11
4-2-2-1-3 pH值對銅粉置換率之效應 4-14
4-2-2-1-4 攪拌速率對銅粉置換率之效應 4-16
4-2-2-1-5 化學置換法綜合評論 4-16
4-2-3 鐵氧磁體程序 4-18
4-2-3-1 鐵氧磁體程序最佳參數之探討 4-18
4-2-3-1-1 硫酸亞鐵添加量對總殘餘陽離子濃度之效應 4-18
4-2-3-1-2 反應溫度對總殘餘陽離子濃度之效應 4-20
4-2-3-1-3 pH值對總殘餘陽離子濃度之效應 4-22
4-2-3-1-4 曝氣量對總殘餘陽離子濃度之效應 4-24
4-2-3-1-5 鐵氧磁體程序試驗殘渣 4-26
4-2-3-2 鐵氧磁體程序綜合評論 4-28
4-2-3-3 重金屬的質量平衡 4-29
4-2-3-4 重金屬進入尖晶石結構之機制 4-31
4-3 尖晶石污泥資源化之研究 4-34
4-3-1 鐵氧磁體程序產物組成鑑定 4-34
4-3-2 尖晶石產物磁性量測及應用探討 4-37
4-3-3 鐵氧磁體尖晶石污泥催化揮發性有機物之研究 4-43
4-3-3-1 空白試驗 4-43
4-3-3-2 鐵氧磁體尖晶石污泥觸媒潛力測試 4-43
4-3-3-3 異丙醇進流濃度效應 4-46
4-3-3-4 空間流速效應 4-47
4-3-3-5 氧氣含量效應 4-49
4-3-3-6 鐵氧磁體尖晶石污泥選擇性 4-52
4-3-3-7 鐵氧磁體尖晶石污泥長時間衰退試驗 4-52
4-3-3-8 鐵氧磁體尖晶石污泥比表面積(BET)測試 4-56
4-3-3-9 鐵氧磁體尖晶石污泥綜合評論 4-57
4-4 自行合成各種鐵氧磁體作為觸媒催化VOCs之研究 4-58
4-4-1 五種尖晶石觸媒之製備條件 4-58
4-4-2 觸媒活性篩選 4-59
4-4-3 Cu金屬覆載量效應 4-59
4-4-4 觸媒粒徑效應 4-61
4-4-5 自製尖晶石觸媒比表面積(BET)測試 4-63
4-4-6 自製Cu-ferrite尖晶石觸媒SEM/EDS表面微結構觀察 4-66
4-4-7 自製Cu-ferrite尖晶石觸媒XRD晶相組成分析 4-69
4-4-8 自製Cu-ferrite尖晶石觸媒綜合評論 4-69
4-4-9 鐵氧磁體尖晶石污泥與自製Cu-ferrite尖晶石觸媒之比較 4-71
4-4-9-1 觸媒催化能力之比較 4-71
4-4-9-2 觸媒選擇性之比較 4-71
4-4-9-3 觸媒長時間衰退試驗之比較 4-74
4-5 成本效益評估 4-76
第五章 結論與建議 5-1
5-1 結論 5-1
5-1-1 實場污泥特性分析結果 5-1
5-1-2 高效率銅粉回收研究成果 5-2
5-1-3 尖晶石污泥資源化研究成果 5-4
5-1-4 自行合成鐵氧磁體作為觸媒催化VOCs研究成果 5-6
5-1-5 成本效益評估 5-7
5-2 建議 5-8
參考文獻
附錄
圖目錄
圖2-1 印刷電路板典型多層板製造流程 2-3
圖2-2 化學置換法反應機構示意圖 2-17
圖2-3 鐵氧磁體尖晶石立方體結構示意圖 2-32
圖2-4 鐵氧磁體尖晶石物化條件圖 2-38
圖2-5 觸媒焚化器示意圖 2-53
圖3-1 整體研究流程圖 3-4
圖3-2 酸溶出實驗流程圖 3-5
圖3-3 化學置換實驗流程圖 3-6
圖3-4 鐵氧磁體程序實驗流程圖 3-7
圖3-5 酸溶出法-化學置換法-鐵氧磁體程序結合技術批次反應系統 3-22
圖3-6 觸媒催化反應系統示意圖 3-24
圖3-7 鐵氧磁體尖晶石觸媒合成設備 3-28
圖4-1 某印刷電路板廠之廢水處理流程 4-1
圖4-2 酸溶出殘渣中不同硫酸濃度對總殘餘陽離子濃度之影響 4-6
圖4-3 酸溶出殘渣中不同反應溫度對總殘餘陽離子濃度之影響 4-7
圖4-4 酸溶出殘渣中不同溶出時間對總殘餘陽離子濃度之影響 4-8
圖4-5 化學置換法中不同鐵粉添加量對銅粉置換率之影響 4-12
圖4-6 化學置換法中不同反應溫度對銅粉置換率之影響 4-13
圖4-7 化學置換法中不同pH值對銅粉置換率之影響 4-15
圖4-8 化學置換法中不同攪拌速率對銅粉置換率之影響 4-17
圖4-9 鐵氧磁體程序中不同硫酸亞鐵添加量對總殘餘陽離子濃度之影響 4-19
圖4-10 鐵氧磁體程序中不同反應溫度對總殘餘陽離子濃度之影響 4-21
圖4-11 鐵氧磁體程序中不同pH值對總殘餘陽離子濃度之影響 4-23
圖4-12 鐵氧磁體程序中不同曝氣量對總殘餘陽離子濃度之影響 4-25
圖4-13 鐵氧磁體程序污泥SEM圖 4-35
圖4-14 鐵氧磁體程序污泥XRD晶相圖 4-36
圖4-15 鐵磁物質的磁滯曲線圖(M-H曲線圖) 4-38
圖4-16 鐵氧磁體尖晶石污泥磁滯曲線圖 4-41
圖4-17 空白試驗中溫度對異丙醇轉化率之影響 4-44
圖4-18 鐵氧磁體尖晶石污泥觸媒潛力測試圖 4-45
圖4-19 不同進流濃度對異丙醇轉化率之影響 4-48
圖4-20 不同空間流速對異丙醇轉化率之影響 4-50
圖4-21 不同氧氣濃度對異丙醇轉化率之影響 4-51
圖4-22 鐵氧磁體尖晶石污泥長時間衰退試驗 4-55
圖4-23 不同金屬觸媒對異丙醇轉化率之影響 4-60
圖4-24 不同Cu/Fe比例對異丙醇轉化率之影響 4-62
圖4-25 不同粒徑大小對異丙醇轉化率之影響 4-64
圖4-26 (a)使用前及(b)使用後之自製Cu-ferrite尖晶石觸媒SEM圖(Cu/Fe=1/5) 4-67
圖4-27 (a)使用前及(b)使用後之自製Cu-ferrite尖晶石觸媒XRD圖(Cu/Fe=1/5) 4-70
圖4-28 鐵氧磁體尖晶石污泥與自製Cu-ferrite尖晶石觸媒催化性能比較圖 4-72
圖4-29 鐵氧磁體尖晶石污泥與自製Cu-ferrite尖晶石觸媒長時間衰退試驗比較圖 4-75
附圖1 酸溶出法-化學置換法-鐵氧磁體程序結合技術批次反應系統實景
附圖2 觸媒催化反應系統示意圖實景
附圖3 鐵氧磁體尖晶石污泥具磁性之證明
表目錄
表2-1 各類型電路板製程單元使用物料及定期排棄槽液污染特性 2-5
表2-2 電路板工廠廢水、廢液分類原則及處理方式 2-7
表2-3 重金屬污泥資源化技術 2-9
表2-4 影響化學置換法因子之相關文獻彙整(1/5) 2-21
表2-4 影響化學置換法因子之相關文獻彙整(2/5) 2-22
表2-4 影響化學置換法因子之相關文獻彙整(3/5) 2-23
表2-4 影響化學置換法因子之相關文獻彙整(4/5) 2-24
表2-4 影響化學置換法因子之相關文獻彙整(5/5) 2-25
表2-5 尖晶石型鐵氧磁體可包含的金屬種類 2-31
表2-6 尖晶石化合物的各種形式 2-33
表2-7 鐵氧磁體程序影響因子之相關文獻彙整(1/4) 2-43
表2-7 鐵氧磁體程序影響因子之相關文獻彙整(2/4) 2-44
表2-7 鐵氧磁體程序影響因子之相關文獻彙整(3/4) 2-45
表2-7 鐵氧磁體程序影響因子之相關文獻彙整(4/4) 2-46
表2-8 各種VOCs控制技術優缺點比較 2-50
表2-9 鐵氧磁體尖晶石觸媒應用一覽表 2-57
表4-1 實場污泥物理性質 4-3
表4-2 實場污泥TCLP測試結果 4-4
表4-3 酸溶出殘渣TCLP測試結果 4-9
表4-4 鐵氧磁體程序殘渣TCLP測試結果 4-27
表4-5 鐵氧磁體程序上澄液分析結果 4-28
表4-6 鐵氧磁體程序中重金屬質量平衡數據 4-30
表4-7 重金屬氫氧化物的第一解離常數 4-33
表4-8 鐵氧磁體程序實驗尖晶石污泥磁性測試結果 4-40
表4-9 各種鐵氧磁體之磁性、電性及基本結構 4-40
表4-10 異丙醇轉化率與產物生成關係表(鐵氧磁體尖晶石污泥) 4-53
表4-11 鐵氧磁體尖晶石污泥使用前後比表面積測試結果 4-56
表4-12 自製尖晶石觸媒比表面積測試結果 4-65
表4-13 Cu-ferrite觸媒EDS測試結果(Cu/Fe=1/5) 4-68
表4-14 異丙醇轉化率與產物生成關係表(自製Cu-ferrite觸媒) 4-73
表4-15 酸溶出法-化學置換法-鐵氧磁體程序技術成本效益評估 4-77
參考文獻 References
中文文獻
鄭武輝、廖錦聰,簡介鐵氧磁體,工業技術,27,pp. 24-32,1976。
奧田胤明,石原敏夫,フエライト法による重金屬廢水の處理,NEC技報,Vol.37,No.9,1984。
邵國書、陳松璧、劉騰凌、吳健、陳曉旼,印刷電路板工廠廢水改善實例介紹,工業污染防治,第21期,pp. 171-181,1987。
吳榮宗,工業觸媒概論,黎明書店經銷,1989。
劉國棟,VOC 管制趨勢展望,工業污染防治,第48期,p. 15-31,1992。
陳文泉,重金屬廢水鐵氧磁體法處理之基礎研究,成功大學碩士論文,1992。
吳在賢、蔡敏行等,電鍍廢水Ferrite化處理之研究,國科會專題研究計劃研究報告,1992。
黃契儒,電鍍廢水鐵氧磁體化及前處理研究,成功大學碩士論文,1993。
宋宏凱,電鍍廢水鐵氧磁體法及其安定性之研究,成功大學碩士論文,1994。
陳繼仁,陶瓷技術手冊(上)︰第十七章 磁性陶瓷,中華民國粉末冶金協會,1994。
印刷電路板製造業廢棄物之回收與處理,工業污染防治報導,Vol. 8,No. 85,p1-3,1995。
唐敏注,通訊用軟磁材料之特性及應用,工業材料,105,pp. 42-50,1995。
王月鳳,重金屬離子之鐵氧磁體化研究,成功大學碩士論文,1995。
呂慶慧、王壬、楊維鈞,以碳酸銨浸漬回收電鍍污泥中銅、鎳、鋅之研究,國際工業減廢技術與策略研討會論文集,pp. 605-617,1995。
85年度電路板業廢水污泥與廢板邊料之特性分析及處理處置方案評估專案綜合報告,經濟部工業局污染防治技術服務團,1996。
印刷電路板製造業廢棄物資源化案例彙編,工業污染防治技術服務團,1996。
陳元慶、林淙敏、王振豐、張嫈女,印刷電路板至作用硫酸/雙氧水蝕刻液的回收處理及其資源化之現況,工業污染防治季刊,第59期,1996。
廖文祥、李世強、張啟答,印刷電路板製造業建置環境管理系統實例介紹,工程實務技術研討會,1997。
吳海山,鐵氧磁體化法處理不?袗?酸洗廢水,成功大學碩士論文,1998。
鄭鎮東,易磁化的磁性材料-磁蕊材料,磁性技術手冊,頁3-1~3-10,1999。
施英隆,環境化學,高立出版社,2000。
經濟部工業局,印刷電路板業環保工安整合性技術手冊,2000。
黃建元、郭奕伶、劉文華,國內外印刷電路板業空氣污染物管制規範簡介,工業污染防治報導,第152期,2000。
朱昱學,改善電路板工廠廢水處理系統降低處理成本,工業污染防治報導,第150期,p. 17-20,2000。
陳盛宗、鄧喬明,金屬濕式提煉回收(MR3)技術說明,電路板會刊,No.17,pp. 56-62,2002。
金重勳,軟磁技術簡介,實用磁性材料,頁117-132,2002。
林正雄,鐵氧體軟磁材料,磁性技術手冊,頁133-158,2002。
廖啟鐘、周珊珊、彭淑惠、陳淑珍,銅污泥酸化電解回收之研究,第
二十七屆廢水處理技術研討會論文,2002。
蔡敏行、李伯興、胡紹華,含重金屬污泥資源化關鍵技術,泥渣廢棄物資源化技術研討會論文集,pp. 47-64,2002。
張健桂,以鐵氧磁體程序處理含重金屬實驗室廢液之研究,國立中山大學環境工程研究所碩士論文,2002。
涂耀仁,以多段式磁鐵化法處理重金屬系實驗室廢液,國立中山大學環境工程研究所碩士論文,2002。
王能誠,二氧化碳還原用鐵氧磁體觸媒之製備及其特性研究,國立成功大學博士論文,2002。
黃鈺軫、杜秋慧、宮敏、林忠義、林傳倫、張景順,實驗室重金屬廢液鐵氧磁體化法處理之研究,第二十八屆廢水處理技術研討會,2003。
吳忠信、駱尚廉、郭昭吟、曾楹珍,酸萃取含銅工業污泥之可行性研究,重金屬污泥減量、減容及資源化關鍵技術研討會暨說明會論文集,p11-17,2003。










Referrences
Agelidis T., Fytianos K. and Vasilikiotis G.. Lead Removal from Wastewater by Cementation Utilising a Fixed Bed of Iron Spheres, Environmental Pollution. Vol. 50, 243-251. 1988.
Bandyopadhyay G. and Fulrath R. M. Processing Parameters and Properties of Lithium Ferrites Spinel, Journal of the American Ceramic Society. Vol. 57, No. 4, 182-186. 1974.
Barrado E., Prieto F., Vega M. and Fernandez-polanco F., Optimization of the operational variables of a medium-scale reactor for metal-containing wastewater purification by ferrite formation. Water Research. Vol. 32, No. 10, 3055-3061. 1998.
Barrado E., Vega M., Pardo R., Ruiperez M., Medina J. Anaytical Letters. Vol. 29, No. 4, 613. 1996.
Bonsdorf G., Langbein H. and Knese K. Investigations into Phase Formation of LiFe5O8 from Decomposed Freeze-Dried Li-Fe Formates, Materials Research Bulletin. Vol. 30, No. 2, 175-181. 1995.
Burrell D. C. Atomic Spectrometric Analysis of Heavy Metal Pollutants in water, Ann Arbor, Michigan, Ann Arbor science Publishers. 19-45. 1974.
Chen H. J. and Lee C. Effect of the Type of Chelating Agent and Deposit Morphology on the Kinetics of the Copper-Aluminum Cementation System. Langmuir. Vol. 10, 3880-3886. 1994.
Chow G. M. and Gonsalves K. E. Nanomaterials: Synthesis, Properties and Applications, A. S. Edelstein and R. C. Cammarata ed., Ch. 3, Philadelphia, PA: Institute of Physics Pub. Bristol. 1996.
Cubeiro M. L., Fierro J. L. G.. Selective Production of Hydrogen by Partial Oxidation of Methanol over ZnO-Supported Palladium Catalysts, Journal of catalysis. Vol. 179, 150-162. 1998.
Denahui F. B., Hooper R. M. and Wragg A. A. Cementation of Copper on Packed-Beds of Iron Particles – some mass transfer and morphological aspects. Chemistry and Industry. Vol. 17, 571-574. 1986.
Djokic S. S. Cementation of Copper on Aluminum in Alkaline-Solutions, Journal of the Electrochemical Society. Vol. 143, No. 4, 1300-1305. 1996.
Donmez B., Sevim F. amd Sarac H. A Kinetic study of the cementation of copper from sulfate solutions onto a rotation aluminum disc, Hydrometallurgy. Vol. 53, 145-154. 1999.
Feitknecht W. and Gallagher K. J. Mechanisms for the oxidation of Fe3O4, Nature. Vol. 228, 548-549. 1970.
Fujiwara M., Kieffer R., Ando H., Souma Y. Development of composite catalysts made of Cu-Zn-Cr oxide/zeolite for the hydrogenation of carbon dioxide, Applied Catalyst A: General. Vol. 121, 113-124. 1995.
Gil A., Diaz A., Gandia L. M. and Montes M. Influence of the Preparation Method and Nature of the Suppor on the Stability of Nickel Catalyst, Applied Catalyst A: General. Vol. 109, No.2, 355-361. 1994.
Gokon N., Shimada A., Kaneko H., Tamaura Y., Ito K., Ohara T. Magnetic coagulation and reaction rate for the aqueous ferrite formation reaction, Journal of Magnetic Materials. Vol. 238, 47-55. 2002.
Goldman A. Modern Ferrite Technology, New York: Van Nostrand Reinhold. 21-44. 1990.
Guaita F. J., Beltrán H., Cordoncillo E., Carda J. B. and Escribano P. Influence of The Precursors on The Formation and The Properties of ZnFe2O4, Journal of the European Ceramic Society. Vol. 19, 363-372. 1999.
Hamada S. and Kuma K. Preparation of γ-FeOOH by Aerial Oxidation of Iron(Ⅱ) Chloride Solution, Bulletin of the chemical society of Japan. Vol. 49, No. 12, 3695-3696. 1976.
Hwang C. S., Wang N. C. Preparation and Characteristics of Ferrite Catalysts for Reduction of CO2, Materials Chemistry and Physics. Vol. 88, 258-263. 2004.
Ichinose N., Ozaki Y. and Kashû S. Superfine Particle Technology, Ch. 3 and Ch. 4, Springer-Verlag London Limited. 1992.
James J. S. Complete Catalytic Oxidation of Volatile Organics, Industrial Engineering Chemical Research. Vol. 26, No.11, 2165-2180, 1987.
Jandova J., Stefanowicz T. and Niemczykova. R. Recovery of Cu-concentrates from Waste Galvanic Copper Sludges, Hydrometallurgy. Vol. 57, 77-84. 2000.
Johnson M. D. Development of Organic Assisted Magnetite Formation for the Remediation of Metal Contaminants, Technical Completion Report. 1997.
Kaneko K., Takei K., Tamaura Y., Kanzaki T. and Katsura T. The Formation of the Cd-bearing Ferrite by the Air Oxidation of an Aqueous Suspension, Bulletin of the chemical society of Japan. Vol. 52, No. 4, 1080-1085. 1979.
Kanzaki T., Nakajima J., Tamaura Y. and Katsura K. Formation of Zn-bearing Ferrite by Air Oxidation of Aqueous Suspension, Bulletin of the chemical society of Japan. Vol. 54, 135-137. 1981.
Kiyama M. and Takada T. The Hydrolysis of Ferric Complexes. Magnetic and Spectrophotometric Studies of Aqueous Solutions of Ferric Salts, Bulletin of the chemical society of Japan. Vol. 46, 1680-1686. 1973.
Kiyama M. Conditions for the Formation of Fe3O4 by the Air Oxidation of Fe(OH)2 Suspensions, Bulletin of the chemical society of Japan. Vol. 47, 1646-1650. 1974.
Kiyama M. The Formation of Manganese and Cobalt Ferrites by the Air Oxidation of Aqueous Suspensions and Their Properties, Bulletin of the chemical society of Japan. Vol. 51, 134-138. 1978.
Kodama T., Wada Y., Yamamoto T., Tsuji M. and Tamaura Y. CO2 Decomposition to Carbon by Ultrafine Ni(II)-bearing Ferrite at 300℃, Materials Research Bulletin. Vol. 30, No. 8, 1039-1048. 1995.
Ku Y. and Chen C. H. Removal of Chelated Copper from Wastewaters by Iron Cementation, Industrial & Engineering Chemistry Research. Vol. 31, 1111-1115. 1992.
Ku Y., Wu M. H. and Shen Y. S. Mercury Removal from Aqueous Solutions by Zinc Cementation, Waste Management. Vol. 22, 721-726. 2002.
Lapedes D. N. Dictionary of scientific and Technical Terms, New York, McGraw-Hill. 1974.
Lopez-Delgado A. and Lopez F. A. Synthesis of Nickel-Chromium-Zinc Ferrite Powders from Stainless Steel Pickling Liquors, Journal of Materials Research. Vol. 14, No. 8, 3427-3432. 1999.
Mandaokar S. S., Dharmadhikari D. M. Retrieval of Heavy Metal Ions from Solution via Ferritisation, Environmental Pollution. Vol. 83, 277-282. 1994.
Mathew T., Rao B. S., Gopinath C. S. Tertiary Butylation of Phenol on Cu1-xCoxFe2O4: Catalysis and Structure-Activity Correlation, Journal of Catalysis. Vol. 222, 107-116. 2004.
Matyi R. J., Schwartz L. H. and Butt J. B. Particle Size, Particle Size Distribution, and Related Measurements of Supported Metal Catalysts, Catalysis Reviews: Science and Engineering. Vol. 29, No.1, 41-99. 1987.
McCurrie R. A. Ferromagnetic Materials Structure and Properties, Academic Press Inc., San Diego. 1994.
Mehmet E., Fikret T. Chromium Removal from Aqueous Solution by The Ferrite Process, Journal of Hazardous Materials B. Vol. 109, 71-77. 2004.
Micheli A. Preparation of Lithium Ferrite by Coprecipitation, IEEE Transactions on Magnetics. Vol. 6, No. 3, 606-608, 1970.
Mishra R., Biest O. O. V. D. and Thomas G. Materials Loss and High Temperature Phase Transition in Lithium Ferrite, Journal of the American Ceramic Society. Vol. 61, 121-126. 1978.
Nagashima T. J. Mag. Soc. Jpn. Vol. 2 No. 2, 46. 1978.
Nguyen H. H., Tran T. and Wong P. L. M. A Kinetic Study of The Cementation of Gold from Cyanide Solutions onto Copper, Hydrometallurgy. Vol. 46, 55-69. 1997.
Nishamol K., Rahna K. S., Sugunan S. Selective Alkylation of Aniline to N-methyl Aniline Using Chromium Manganese Ferrospinels, Journal of Molecular Catalysis A: Chemical. Vol. 209, 89-96. 2004.
Nojiri N., Tanaka N., Sato K. Sakai Y. Electrolytic Ferrite Formation System for Heavy Metal Removal, Journal of the Water Pollution Control Federation. Vol. 52, 1898-1906. 1980.
Norman N. Li., Sc D. Recent Developments in Separation Science. Vol. 8. 1978.
Nosier S. A. and Sallam S. A. Removal of Lead Ions from Wastewater by Cementation on a Gas-sparged Zinc Cylinder, Separation and Purification Technology. Vol. 18, 93-101. 2000.
Okuda T. Removal of Heavy Metals from Wastewater by Ferrite Co-orecioitation. Filtration and Separation. Vol. 12, No. 5, 472-478. 1975.
Oliver S. A. and Vittoria C. Magnetic and Structural Properties of Laser Deposited Lithium Ferrite Films, IEEE Transactions on Magnetics. Vol. 30, No. 6, 4933-4935. 1994.
Patterson J. W. and Jancuk W. A. Cementation Treatment of Copper in Wastewater, Proc. Ind. Waste Conf. Vol. 32, 853-865. 1977.
Perez O. P., Umetsu Y. and Sasaki H. Precipitation And Densification of Magnetic Iron Compounds from Aqueous Solution at Room Temperature, Hydrometallurgy. Vol. 50, 223-242. 1998.
Perez O. P. and Yoshiaki. ORP-monitored Magnetite Formation from Aqueous Solutions at Low Temperayures, Hydrometallurgy. Vol. 55, 35-56. 2000.
Peshev P. Preparation of Spinel Lithium Ferrite by Thermal Treatment of Spray-dried Formates, Materials Research Bulletin. Vol. 3, 1167. 1978.
Peter J. S.and Karl P. Ferrite Plating: a Chemical Method Preparing Magnetic Films at 24-100℃ And Its Applications, Electrochemica Acta. No. 45, 3337-3343. 2000.
Pierson W. R., Gertler A. W. and Bradow R. L. Influence of Tetragonal Distortion on Magnetic And Magneto-optical Properties of Copper Ferrite Films, Journal of Physics and Chemistry of Solids. Vol. 61, 863-867. 1990.
Pope D., Walker D. S., Moss R. L. Evaluation of Cobalt Oxide Catalysts for the Oxidation of Low Concentration of Organic Compounds, Atmospheric Environment. Vol. 10, No. 6, 951-956. 1976.
Puvvada G. and Tran T. The Cementation of Ag(Ι) Ions from Sodium-Chloride Solutions Onto a Rotation Copper Disc, Hydrometallurgy. Vol. 37, No. 2, 193-206. 1995.
Radian C. Control Techniques for Volatile Organic Emission from Stationary Source, USEPA, EPA-450/2-78-022. 1978.
Ridgley D. H., Lessoff H. and Childress J. D. Effect of Lithium and Oxygen Losses on Magnetic and Crystallographic Properties of Spinel Lithium Ferrite, Journal of the American Ceramic Society. Vol. 53, No. 6, 304-311. 1970.
Ritter J. J. and Maruthamuthu P. Synthesis of NiFe2O4 by a Metal-organo Method, Journal of Materials Synthesis and Processing. Vol. 3, No. 5, 331-337. 1995.
Roco M. C., Williams R. S. and Alivisatos P. Nanotechnology Research Directions: Interagency Working Group on Nanosciecne, Engineering and Technology (IWGN) Workshop Report-Vision for Nanotechnology R&D in The Next Decade. NSTC, USA. 1-226, 1999.
Spivey J. J. Complete Catalytic Oxidation of Volatile Organics, Industrial & Engineering Chemistry Research. Vol. 26, 2165-2180. 1987.
Sreekumar K. and Sugunan. S. Ferrospinels Based on Co and Ni Prepared via A Low Temperature Route as Efficient Catalysts for The Selective Synthesis of O-cresol And 2,6-xylenol from Phenol and Methanol, Journal of Molecular Catalysis A: Chemical. Vol. 185, 259-268, 2002.
Sreekumar K., Mathew T., Mirajkar S. P., Sugunan S., Rao B. S. A Comparative Study on Aniline Alkylation Activity Using Methanol And Dimethyl Carbonate as The Alkylating Agents Over Zn-Co-Fe Ternary Spinel Systems, Applied Catalysis A: General. Vol. 201, L1-L8, 2000.
Stefanowicz T., Osinska M. and Stefania. N. Copper Recovery by The Cementation Method, Hydrometallurgy. Vol. 47, 69-90. 1997.
Tabuchi M., Ado K., Sakaebe H., Masquelier C., Kageyama H. and Nakamura O. Preparation of AFeO2 (A=Li, Na) by Hydrothermal Method, Solid State Ionics. Vol. 79, 220-226. 1995.
Takada T. and Kiyama M. Proceedings of the International Conference on Ferrites. p69. 1970.
Tamaura Y., Katsura T., Rojarayanont S., Yoshida T. and Abe H. Ferrite process: Heavy Metal Ions Treatment System, Water Science And Technolygy. Vol. 23, 1893-1900. 1991a.
Tamaura Y., Tu P. Q., Rojarayanont S. and Abe H. Stabilization of hazardous materials into ferrites. Water Science And Technolygy. Vol. 23, 399-404. 1991b.
Tao S., Gao F., Liu X. and Sorensen O. T. Preparation And Gas Sensing Properties of CuFe2O4 at Reduced Temperature. Materials Science and Engineering. B: Solid-state Materials for Advanced Vol. 77, 172-176. 2000.
Tsuji M., Kodama T., Yoshida T., Kitayama Y. and Tamaura Y. Preparation and CO2 Methanation Activity of an Ultrafine Ni(II) Ferrite Catalyst, Journal of Catalysis. Vol. 164, 315-321. 1996.
Tsuji T. Ferrite-Technology Applications and Their Expansion from Electronics to Civil Engineering Fields, Inter. Conf. On Ferrites, Part Ι, ΙΙ. 573-581. 1985.
Wang W., Xu Z. and Finch J. Fundamental Study of an Ambient Temperature Ferrite of Acid Mine Drainage, Environmental Science Technolygy. Vol. 30, 2604-2608. 1996.
Wei W. Y., Lee C. and Chen H. J. Modeling and Analysis of the Cementation Process on a Rotation Disk, Langmuir. Vol. 110, 1980-1986. 1994.
Winkler G. Magnetic Properties of Materials, J. Smit (ed.), McGraw-Hill, New York, p.20-63. 1971.
Xia Y., Armstrong T., Prado F. and Manthiram A., Sol-gel Synthesis, Phase Relationships, And Oxygen Permeation Properties of Sr4Fe6-xCoxO13+δ(0≦x≦3), Solid State Ionics. Vol. 130, 81-90. 2000.
Yamanobe Y., Yamaguchi K., Matsumoto K. and Fuji T., Magnetic Properties of Sodium-Modified Iron-Oxide Powders Synthesized by Sol-Gel Method, Japanese Journal of Applied Physics. Vol. 30, No. 3, 478-483. 1991.
Zhou R. X., Jiang X. Y., Mao J. X., Zheng X. M. Oxidation of Carbon Monoxide Catalyzed by Copper-zirconium Composite Oxides, Applied Catalyst A: General. Vol. 162, 213-222. 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code