Responsive image
博碩士論文 etd-0905107-175230 詳細資訊
Title page for etd-0905107-175230
論文名稱
Title
利用真空濺鍍法製備可見光奈米光觸媒進行丙酮分解之研究
Application of Sputtering Technology on Preparing Visible-light Nano-sized Photocatalysts for the Decomposition of Acetone
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
114
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-22
繳交日期
Date of Submission
2007-09-05
關鍵字
Keywords
真空濺鍍法、丙酮分解效率、光催化氧化、光敏感性、光觸媒改質
sputtering technology, acetone decomposition, photocatalytic oxidation, photosensitive, acetone, modified photocatalysts
統計
Statistics
本論文已被瀏覽 5666 次,被下載 5650
The thesis/dissertation has been browsed 5666 times, has been downloaded 5650 times.
中文摘要
本研究利用真空濺鍍法(sputtering)製備銦錫氧化薄膜 (indium-tin oxide, ITO)及氮摻雜改質之二氧化鈦光觸媒,進行改質光觸媒(TiO2/ITO、TiO2/N)與未改質光觸媒(TiO2)對丙酮之光催化分解效率之測試,並進一步探討光催化操作參數(光波長、相對濕度)對丙酮分解效率之影響。
本研究採用批次式光催化反應器進行光催化分解丙酮實驗,實驗探討之操作參數包括光波長 (350~400 nm、435~500 nm、506~600 nm)、觸媒種類(TiO2/ITO、TiO2/N、TiO2)及相對濕度(0%、50%、100%)。光催化反應器上方置放照射光源(4支20W近紫外光燈管、藍光LED、綠光LED),內部則置放披覆光觸媒薄膜之試片,丙酮則以氣密式注射針筒(gasket syringe)注入,進行光催化氧化反應實驗。反應物及產物分析係以氣相層析儀/火燄離子偵測器配合甲烷轉換器加以偵測並定量之。
本研究製備之改質光觸媒呈四角柱狀晶型,其寬度為100~200 nm、薄膜厚度約為4.0μm。光敏感度分析結果發現,TiO2/ITO之紅移效果比TiO2/N及TiO2明顯,而TiO2/N又略優於TiO2。異相光催化分解丙酮實驗結果得知,以TiO2/ITO之分解效率為最高,TiO2/N與TiO2次之,但TiO2/N分解丙酮之效率又略優於 TiO2。本研究結果發現以TiO2/ITO在照射UV光、相對濕度50%條件下,可達最佳丙酮分解效率。由本實驗分析結果得知,異相光催化分解丙酮為零階反應。ITO可有效改質光觸媒,在可見光照射下,對光催化分解丙酮之效率有一定程度之提昇,且與光敏感度分析結果一致。
Abstract
This study investigated the decomposition efficiency of acetone using unmodified (pure TiO2) and modified TiO2 (TiO2/ITO、TiO2/N) prepared by sputtering technology. The influence of operating parameters including wavelength and relative humidity on the decomposition efficiency of acetone was further discussed. Operating parameters investigated included light wavelength (350~400, 435~500, and 506~600 nm), photocatalysts (TiO2/ITO, TiO2/N, and TiO2), and relative humidity (RH) (0%, 50%, and 100%).
In the experiments, acetone was degraded by photocatalysts in a self-designed batch photocatalytical reactor. Samples coated with TiO2 were placed in the batch reactor. The incident light with different wavelength was irradiated by a 20-watt lamp. Moreover, a low-pressure mercury lamp for UV light or LED lamps for blue and green lights were placed on the top of reactor. Acetone was injected into reactor by using a gasket syringe. Reactants and products were analyzed quantitatively by a gas chromatography with a flame ionization detector followed by a methaneizer (GC/FID-Methaneizer).
The structure of the photocatalyst film surface showed taper and the width of column ranged from 100 to 200 nm. The film structure showed crystallization cylindrical surface and the thickness of the photocatalyst film was in the range of 4.0-4.3 μm. The highest decomposition efficiency of acetone was observed by using TiO2/ITO under visible-light with 50% RH. The synthesis of TiO2 was mainly anatase for the tested photocatalysts. AFM images showed that the photocatalyst surface appeared rugged and the shape showed a mountain ridge distribution .

Keywords: sputtering technology, modified photocatalysts, photosensitive, acetone, photocatalytic oxidation, acetone decomposition
目次 Table of Contents
目錄
謝誌…………………………………………………………………. Ⅰ
中文摘要……………………………………………………………. Ⅱ
英文摘要……………………………………………………………. Ⅲ
目錄…………………………………………………………………. Ⅳ
表目錄………………………………………………………………. Ⅴ
圖目錄………………………………………………………………. Ⅵ
第一章 前言….................….................….................….................... 1-1
1-1 研究緣起............….................….................….................... 1-1
1-2 研究目的............….................….................….................... 1-2
1-3 研究範圍............….................….................….................... 1-5
第二章 文獻回顧............….................….................…..................... 2-1
2-1 光觸煤之發展趨勢及應用...….................…...................... 2-1
2-2 二氧化鈦光觸煤….................….................….................... 2-3
2-2-1 二氧化鈦結構特性....….................…...................... 2-3
2-2-2 二氧化鈦之光催化反應............…........................... 2-6
2-3 二氧化鈦改質之製備方法................….............................. 2-8
2-3-1 真空濺度法………………………………………... 2-10
2-3-2 改質二氧化鈦製備可見光光觸媒………………... 2-11
2-3-3 銦錫氧化導電薄膜………………………… 2-14
2-4 揮發性有機物之光催化反應.......…................................... 2-15
2-4-1揮發性有機物之來源與性質.................................... 2-15
2-4-2 異相光催化反應....................................................... 2-19
2-4-3 光催化反應機制....................................................... 2-21
2-5 影響光催化反應效率之參數.............................................. 2-23
2-5-1 光波長之影響........................................................... 2-23
2-5-2 溫度之影響………................................................... 2-25
2-5-3 水氣含量之影響....................................................... 2-25
第三章 研究方法............................................................................... 3-1
3-1 實驗設備與材料.................................................................. 3-1
3-1-1濺鍍設備……………………………….................... 3-1
3-1-2真空濺鍍法製備二氧化鈦及ITO薄膜……............ 3-2
3-2 光催化氧化實驗設計.......................................................... 3-5
3-2-1 實驗材料................................................................... 3-5
3-2-2 批次式光催化氧化反應系統................................... 3-6
3-2-3 載體吸附測試……………………………………... 3-7
3-2-4 均相光反應測試…………………………………... 3-8
3-2-5 異相光反應測試…………………………………... 3-8
3-2-6 不同波長範圍之光源設計……………………… 3-8
3-2-7 操作參數及範圍..................................................... 3-11
3-2-8 採樣與分析系統...................................................... 3-11
3-2-9 品保與品管............................................................. 3-13
3-3 反應物及產物分析方法...................................................... 3-16
第四章 結果與討論.......................................................................... 4-1
4-1光觸媒基本特性分析結果................................................... 4-1
4-1-1 光敏感度分析…....................................................... 4-1
4-1-2表面粗糙度………….……………........................... 4-4
4-1-3 薄膜厚度分析……………..………………………. 4-4
4-1-4 晶相分析…………………………………………... 4-12
4-2 光催化氧化反應背景測試結果.......................................... 4-14
4-2-1系統測試結果............................................................ 4-14
4-2-2均相光解反應測試結果............................................ 4-15
4-2-3載體吸附測試結果.................................................... 4-16
4-3光催化氧化反應之影響探討……………………………... 4-18
4-3-1光觸媒種類對於光催化氧化反應之影響………… 4-18
4-3-2光波長對於光催化氧化反應之影響……………… 4-21
4-3-3水氣對於光催化氧化反應之影響............................ 4-23
4-4光催化分解丙酮……………………................................... 4-26
4-4-1光催化分解丙酮之反應速率………........................ 4-26
4-4-2光催化分解丙酮之反應階數……………………… 4-27
4-5光源能量對分解丙酮之影響…………………………….. 4-31
4-6分解丙酮之產物分析……………………………………... 4-36
第五章 結論與建議.......................................................................... 5-1
5-1 結論...................................................................................... 5-1
5-2 建議……………………………………………………….. 5-3
參考文獻…………………................................................................. 6-1
附錄………......................................................................................... A-1

表目錄
表1-1 主要半導體材料的能隙和化學安定性…................... 1-4
表2-1 銳鈦礦與金紅石之物理特性比較.................….................. 2-5
表2-2 不同觸媒製備方法之優缺點比較………………………... 2-10
表2-3 大氣中常見揮發性有機化合物之種類....................... 2-17
表2-4 室內空氣中典型的有機性溶劑........................................... 2-18
表2-5 丙酮之物理及化學特性…................................................... 2-19
表3-1 光催化分解實驗之操作參數及範圍…………………….. 3-12
表3-2 品保及品管查核結果一覽表………………………….… 3-15
表3-3 氣相層析儀GC HP 5890之操作條件……………............. 3-17
表3-4 氣相層析儀�火焰離子偵測器-HP6890甲烷轉化器之操作條件……………………................................................... 3-18
表4-1 金紅石(Rutile)與銳鈦礦(Anatase) TiO2之XRD繞射峰位置表………………………………………………………... 4-14
表4-2 不同觸媒種類在不同燈源及不同相對濕度下之反應速率常數彙整表……………………………………………... 4-27



圖目錄
圖1-1 照光下的半導體光觸媒............................................................... 1-3
圖1-2 氮摻雜改質TiO2光觸媒示意圖........................................….. 1-4
圖1-3 光催化氧化實驗流程圖…........................................................... 1-6
圖2-1 常用半導體之能隙……………………………………………... 2-4
圖2-2 二氧化鈦光觸媒之應用領域…………………….…………….. 2-4
圖2-3 銳鈦礦與金紅石之晶格結構………………............................... 2-6
圖2-4 觸媒受光激發生成電子與電洞之能階位置圖……………....... 2-7
圖2-5 N摻雜 TiO2之UV-VIS吸收光譜圖…....................................... 2-12
圖2-6 S摻雜TiO2與TiO2之UV圖譜.................................................. 2-13
圖2-7 二氧化鈦薄膜於ITO導電薄膜上受光激發後電子電洞分離傳導圖……………………………………………………………. 2-15
圖2-8 不同電子轉移型式圖…………………………………………... 2-21
圖2-9 波長與能量關係圖……………………………………………... 2-24
圖2-10 溫度影響丙酮之分解趨勢圖…………………………...……… 2-25
圖2-11 水氣濃度影響丙酮分解速率之趨勢圖………………………... 2-26
圖3-1 英國GENCOA公司TWINLAB型濺鍍系統…...……………. 3-2
圖3-2 封閉式非平衡磁控濺鍍設備構造示意圖…….……...………... 3-5
圖3-3 批次式光催化氧化反應系統示意圖…….…………...………... 3-9
圖3-4 紫外燈管之光波長分佈……………………………….……….. 3-9
圖3-5 藍、綠LED燈之光源實體圖…………………………………. 3-10
圖3-6 藍色LED燈之光波長分佈…………………………………….. 3-10
圖3-7 綠色LED燈之光波長分佈…………………………………….. 3-11
圖4-1 不同觸媒種類之UV-VIS吸收光譜……………………………. 4-3
圖4-2 不同觸媒種類之UV-VIS穿透率光譜…………………………. 4-3
圖4-3 TiO2/ITO之表面粗糙度3D型態……………………………….. 4-5
圖4-4 TiO2/N之表面粗糙度3D型態…………………………………. 4-5
圖4-5 TiO2之表面粗糙度3D型態……………………………………. 4-6
圖4-6 TiO2/ITO放大37,000倍之SEM圖…………………………….. 4-7
圖4-7 TiO2/N放大37,000倍之SEM圖……………………………….. 4-8
圖4-8 TiO2放大37,000倍之SEM圖………………………………….. 4-8
圖4-9 TiO2/ITO放大100,000倍之SEM圖…………………………… 4-9
圖4-10 TiO2/N放大100,000倍之SEM圖……………………………… 4-9
圖4-11 TiO2放大100,000倍之SEM圖………………………………… 4-10
圖4-12 TiO2/ITO放大15,000倍之剖面SEM圖……………………….. 4-10
圖4-13 TiO2/N放大20,000倍之剖面SEM圖………………………….. 4-11
圖4-14 TiO2放大40,000倍之剖面SEM圖…………………………….. 4-11
圖4-15 TiO2/ITO之XRD分析圖……………………………………….. 4-13
圖4-16 TiO2/N、TiO2之XRD分析圖…………………………………… 4-13
圖4-17 批次式光氧化反應器之壓力測試結…………………………... 4-16
圖4-18 均相光解反應測試結果………………………………………... 4-17
圖4-19 試片吸附反應測試結果………………………………………... 4-17
圖4-20 在UV光照射下不同光觸媒分解丙酮效率隨時間之變化趨勢圖………………………………………………………………... 4-19
圖4-21 在藍光照射下不同光觸媒分解丙酮效率隨時間之變化趨勢圖…………................................................................................... 4-20
圖4-22 在綠光照射下不同光觸媒分解丙酮效率隨時間之變化趨勢圖…………................................................................................... 4-20
圖4-23 TiO2/ITO在不同波長下分解丙酮濃度隨時間之變化趨勢圖... 4-22
圖4-24 TiO2/N在不同波長下分解丙酮濃度隨時間之變化趨勢圖…... 4-22
圖4-25 TiO2在不同波長下分解丙酮濃度隨時間之變化趨勢圖……... 4-23
圖4-26 TiO2/ITO在不同濕度下分解丙酮濃度隨時間之變化趨勢圖... 4-24
圖4-27 TiO2/N在不同濕度下分解丙酮濃度隨時間之變化趨勢圖…... 4-24
圖4-28 TiO2在不同濕度下分解丙酮濃度隨時間之變化趨勢圖……... 4-25
圖4-29 在UV光照射下不同光觸媒分解丙酮效率反應階數示意圖… 4-28
圖4-30 TiO2/ITO在不同濕度、不同燈源下分解丙酮之反應速率常數 4-28
圖4-31 TiO2/N在不同濕度、不同燈源下分解丙酮之反應速率常數…. 4-29
圖4-32 TiO2在不同濕度、不同燈源下分解丙酮之反應速率常數……. 4-30
圖4-33 TiO2/ITO之反應速率常數與波長之關係趨勢圖……………... 4-32
圖4-34 TiO2/N之反應速率常數與波長之關係趨勢圖………………... 4-32
圖4-35 TiO2之反應速率常數與波長之關係趨勢圖…………………... 4-33
圖4-36 反應速率常數與光能量之關係趨勢圖………………………... 4-35
圖4-37 產物隨時間之生成趨勢圖……………………………………... 4-36
參考文獻
附錄
參考文獻 References
竹內浩士、指宿堯嗣,林振華譯,“光觸媒商業最前線”,全華科技圖書股份有限公司,2005。
沈明宗,“實場蓄熱式焚化爐處理排氣中揮發性有機物之操作性能研究”,國立中山大學環境工程研究所碩士論文,2000。
李秀文,“奈米材料對ITO光電特性之改質研究”,元智大學化學工程研究所碩士論文,2004。
吳炳佑、陳湘林、蔣孝澈,“二氧化鈦光觸媒膜之製作與應用”,觸媒與製程,第6卷,pp.52-68,1997。
吳政庭,“以DC雙極直流磁控濺鍍製備氮摻雜二氧化鈦薄膜之光觸媒特性之研究”,國立高雄海洋科技大學輪機工程研究所碩士論文,2006。
周宏邦,“濺鍍二氧化鈦與氮摻雜二氧化鈦薄膜之結構與光觸媒性質研究”,國立東華大學材料科學與工程學系碩士論文,2004。
林敏男,“半導體業作業環境中揮發性有機化合物氣相層析質譜儀分析方法建立”,國立清華大學原子科學系碩士論文,1999。
林芝寧,“新竹地區毒性化學物質流布之風險評估”,淡江大學水資源及環境工程學系碩士論文,2001。
施周、張文輝,“環境奈米技術”,五南圖書出版公司,2006。
洪崇軒、袁中新、劉安治,“氣相近紫外線�二氧化鈦光催化分解四氯乙烯之研究”,第十四屆空氣污染控制技術研討會論文集,pp.319-326,1997。
袁中新、蕭德福、吳政峰、洪崇軒,“二氧化鈦光觸媒改質及四氯乙烯轉化率及礦化率”,第十七屆空氣污染控制技術研考會論文集,2000。
徐上峰,“電子束蒸鍍斜角法製備多孔性二氧化鈦薄膜做為可見光光觸媒之研究”,國立東華大學材料科學與工程學系碩士論文,2006。
張雅婷,“二氧化鈦覆載氧化銦錫奈米材的製備、分析與性質探討”, 國立台北科技大學有機高分子研究所,2004。
游振煥,“建物塗裝VOCs逸散特性之研究”,第二十一屆空氣污染控制技術研討會,2004。
葉世墉,“二氧化鈦的合成與光催化性質的研究”,國立中央大學化學工程與材料工程研究所碩士論文,2005。
楊慶熙,“VOC現行法規與管制趨勢”,VOC管制趨勢與處理技術講習會,中技社空氣污染防制服務團,1995。
盧明俊、阮國棟、陳重男,“二氧化鈦薄膜催化光分解二氯松之研究”,第十六屆廢水處理技術研討會論文集,pp.807,1991。
謝明仁,“以DC雙極直流磁控濺鍍於不同底材上製備二氧化鈦薄膜之光觸媒特性之研究”,國立高雄海洋科技大學輪機工程研究所碩士論文,2006。
藤鳩 昭、橋本和仁、渡部俊也,吳紀聖譯,“圖解光觸媒”,世茂出版,2006。
Anpo M., Shima T., and Kubokawa Y., “ESR and photoluminescence evidence for the photocatalytic formation of hydroxyl radicals on small TiO2 particles,” Chemitry Letters, The Chemical Society of Japan, p.1799 , 1985.
Anpo M.,Yamashita H., Ikeue K.,Fujishima Y., Zhang S. G., Ichihashi Y., Park D. R., Suzuki Y., Koyano K. and Tatsumi T., “Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts,” Catalysis Today, Vol.44, pp.327-332, 1998.
Anpo M., Kishiguchi S., Takeuchi M., Yamashita H., Ikeue K., Morin B., Davidson A. and Che M., “The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method, ” Research on Chemical Intermediates, Vol.27, pp.459-467, 2001.
Asahi R., Morikawa T., Ohwaki T., Aoki K., and Taga Y., “Visible-light photocatalysis in nitrogen-doped titanium oxides, ” Science, pp.293- 269, 2001.
Benitez J., “Process engineering and design for air pollution control,” PTR Prentice-Hall Inc., New Jersey, pp. 466, 1993.
Bender M., Seelig W., Daube C., Frankenberger H., Ocker B., and Stollenwerk J., “Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films, ” Thin Solid Films, Vol.326, pp.72-77, 1998.
Blanco J., Avila P., Bahamonde A., Alvarez E., Sanchez B, and Romero M., “Photocatalyyic destruction of toluene and xylene at gas phase on a titania based monolithic catalyst,” Catal. Today , Vol.29, p.437 , 1996.
Cundall R. B., Rudham R., and Salim M. S., “Photocatalytic oxidation of propan-2-ol in the liquid phase by rutile,” J. Chem. Soc. Faraday Trans. I. 72, p.1642 , 1976.
Chengkun X., Killmeyer R., McMahan L.G., Shahed U., and Khan M. , “Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination, ” Journal of Applied Catalysis B: Environment., Vol.64, pp.312 , 2006.
Choi W., Ko J. Y., Park H., and Chung J. S.,“Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone,” Applied Catalysis B: Environmental, Vol.31, pp.209-220, 2001.
Djaoued Y., Phong V. H., Badilesucu S., Ashrit P. V., Girouard F. E., and Truong V., “Sol-gel-prepared ITO films for electrochromic systems, ” Thin Solid Films, Vol.293, pp.108-112, 1997.
Falconer J. L., Magrini-Bair K. A., “Photocatalytic and thermal catalytic oxidation of acetaldehyde on Pt/TiO2,” J. Catal. , Vol.179, pp.171 , 1998.
Fernandez-Lima F., Baptista D.L. , Zumeta I. , Pedrero E., Prioli R., Vigil E., and Zawislak F.C., “Structure and mechanical properties of co-deposited TiAl thin films, ” Thin Solid Films, Vol.419, pp.65, 2002.
Fu X. F., Zeltner W. A., and Anderson M. A., ” Gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts,” Appl. Catal. B: Environ. , Vol.6, pp.209 , 1995.
Fu X. F., Clark L. A., Zeltner W. A., and Anderson M.A., “Effect of reaction temperature and water vapor content on the heterogeneous photocatalytic oxidation of ethylene,”. Journal Photochem. Photobiol., Vol.97, pp.181 , 1996.
Fukuzawa K. S., Kwan T., “Photoadsorption and photodesorption of oxygen on titanium dioxide,” Journal Catalysis , Vol.11, pp.364 , 1968.
Fujishima A. , Honda K., “Electrochemical photolysis of water at a semiconductor electrode,” Nature, Vol.238, pp.37, 1972.
Gandhe A.R., Fernandes J.B., “A simple method to synthesize N-doped rutile titania with enhanced photocatalytic activity in sunlight,” Journal of Solid State Chemistry, Vol.178, pp.2953 , 2005.
Habibi M. H., Talebian N., “Photocatalytic degradation of an azo dye X6G in water:A comparative study using nanostructured indium tin oxide and titanium oxide thin films,”Dyes and Pigments, Vol.73, pp.186-194, 2007.
Howe R. F., “EPR spectroscopy in surface chemistry: recent developments,” Advances in Colloid and Interface Science 18, pp.1, 1982.
Howe R. F., Gratzel M., “EPR study of hydrated anatase under UV irradiation,” Journal Physical Chemical Vol.91, pp.3906 , 1987.
Hashimoto K., Wasada K., Osaki M., Shono E., Adachi K., Toukai N. , and Kera Y., “Photocatalytic oxidation of nitrogen oxides over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B: Environmental, Vol.30, pp.429-436, 2001.
Higashimoto S. , Sakiyama M., and Azuma M., “Photoelectrochemical properties of hybrid WO3/TiO2 electrode.Effect of structures of WO3 on charge separation behavior,”Thin Solid Films, Vol.503, pp.201-206, 2006.
Hung C. H. , Marinas B. J., “Role of chlorine and oxygen in the photocatalytic degradation of trichloroethylene vapor on TiO2 films,” Environmetnal Science & Technolog, Vol.31, pp.562-568, 1997.
Izumi I., Dunn W. W., Wilbourn K. O., Fan F. R., and Bard A. J., “Heterogeneous photocatalytic oxidation of hydrogens on platinized TiO2 powders,” Journal Physical Chemistry , Vol.24, pp.3207, 1980.
Jaeger C. D. , Bard A. J., “Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at TiO2 particulate system, ” Journal Physical Chemistry , Vol.24 , pp.3146 , 1979.
Kim S. B., Hong S. C, “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst, ” Applied Catalysis B: Environmental, Vol.35, pp.305-315, 2002.
Kitano M. , Takeuchi M. , Matsuoka M. , Thomas J. M. , and Anpo M., “Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts, ” Catalysis Today, Vol.120, pp.133-138, 2007.
Kohno Y., Hayashi H., Takenaka S., Tanaka T., Funabiki T. ,and Yoshida S., “Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2,” Journal of Photochemistry and Photobiology A: Chemistry, Vol.126, pp.117-123, 1999.
Lim T. H., Jeong S. M., Kim S. D. ,and Gyenis J., “Photocatalytic decomposition of NO by TiO2 Particles,” Journal of Photochemistry and Photobiology A: Chemistry, Vol.134, pp.209-217, 2000.
Li J., Sun M., and Ma X. , “Structural characterization of titanium oxide layers prepared by plasma based ion implantation with oxygen on Ti6Al4V alloy, ” Applied Surface Science, Vol.252, pp.7503-7508, 2006.
Li X.Z. , Li F.B. , Yang C.L. , and Ge W.K. , “Photocatalytic activity of WOX-TiO2 under visible light irradiation, ” Journal of Photochemistry and Photobiology A: Chemistry, Vol.141, pp.209-217, 2001.
Linsebigier, Amy L., Lu, Guangquan and Yates, and John T. Jr., “Photocatalysis on TiO2 Surface:Principles, Mechanism, and Selected Results, ” Chemical Reviews, Vol.95, pp.735-758, 1995.
Liu Y., Guoa L., Yan W. , and Liu H., “A composite visible-light photocatalyst for hydrogen production, ” Journal of Power Sources, Vol.159, pp.1300-1304, 2006.
Ma Y., Qiu J. b., Cao Y. , Guan Z., and Yao J. , “ Photocatalytic activity of TiO2 film grown on different substrates, ” Chemosphere , Vol.44, pp.1087-1092, 2001.
Meng L. J., Dos Santos M. P., “Properties of indium tin oxide (ITO) films prepared by r.f. reactive magnetron sputtering at different pressures, ” Thin Solid Films, Vol.303, pp.151-155, 1997.
Meng L. J., Dos Santos M. P., “Structure effect on electrical properties of ITO films prepared by RF reactive magnetron sputtering, ” Thin Solid Films, Vol.289, pp.65-69, 1996.
Mills, A. Hunte, S.L., “An Overview of semiconductor photocatalysis,” Journal of Photochemistry and Photobiology A: Chemistry, Vol.108, pp.1-35, 1997.
Moss R. W., Lee D. H., Vuong K. D., Condrate R. A., Wang X. W., Demarco M., and Stuckey J., “Functional ITO coatings on glasses by RF plasma mist technique in ambient atmosphere, ” Journal of non-crystalline solids, Vol 218, pp.105-112, 1997.
Mwabora J. M., Lindgren T., Avendan E., Jaramillo T. F., Lu J., Lindquist S. E.,| and Granqvist C. G., “Structure, composition, and morphology of photoelectrochemically active TiO2-XNX thin films deposited by reactive DC magnetron sputtering, ” Journal Physical Chemical. B, Vol.108, pp.20193-20198, 2004.
Nishio K., Sei T., and Tsuchiya T., “Preparation and electrical properties of ITO thin films by dip-coating process, ” Journal of materials science, Vol 31, pp.1761-1766, 1996.
Obee T. N., Brown R. T., “TiO2 photocatalysis for indoor air applications: effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene, ” Environ. Sci. Technol. 29, pp.1223 , 1995.
Obee T. N., Hay S. O., “Effects of moisture and temperature on the photooxidation of ethylene on titania, ” Environ. Sci. Technol. , Vol.31 pp.2034 , 1997.
Ohno T., Akiyoshi M., Umebayashi T., Asai K., Mitsui T. and Matsumura M., “Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light, ” Applied catalysis. A, General, Vol.265, pp.115-121, 2004.
Ohno T., Masaki Y., Hirayama S., and Matsumura M. “TiO2-Photocatalyzed Epoxidation of 1-Decene by H2O2 under Visible Light, ” Journal of Catalysis, Vol.204, pp.163-168, 2001.
Phani G., Tulloch, G., Vittorio D. ,and Skryabin I., “ Titania solar cells: new photovoltaic technology, ” Renewable energy, Vol.22, pp.303-309, 2001.
Preis S. , Falconer J. L. , Asensio R. d. P. , Santiago N. C. , Kachina A. , and Kallas J., “ Photocatalytic oxidation of gas-phase methyl tert-butyl ether and tert-butyl alcohol, ” Applied Catalysis B: Environmental, Vol.64, pp.79-87, 2006.
Subrahmanyam M., Kaneco S. ,and Alonso-Vante N., “ A screening for the photoreduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity, ” Applied Catalysis B: Environmental, Vol.23, pp.169-174, 1999.
Song H., Jiang H., Liu X., and Meng G., “ Efficient degradation of organic pollutant with WOX modified nano TiO2 under visible irradiation, ” Journal of Photochemistry and Photobiology A: Chemistry, Vol.181, pp.421-428, 2006.
Takahashi Y., Okada S., Tahar R. B. H., Nakano K., Ban T., and Ohya Y., “ Dip-coating of ITO films, ” Journal of non-crystalline solids, Vol.218, pp.129-134, 1997.
Takeuchi M., Yamashita H., Matsuoka M., Anpo M., Hirao T., Itoh N., and Iwamoto N., “ Photocatalytic decomposition of NO under visible light irradiation on the Cr-ion-implanted TiO2 thin film photocatalyst, ” Catalysis Letters, Vol.67, pp.135-137, 2000.
Tanaka T., Teramura K. ,and Funabiki T., “ Photo-oxidation of cyclonhexane over alumina-supported vanadium oxide catalyst, ” Journal of Molecular Catalysis A: Chemical, Vol.165, pp.299-301, 2001.
Torres G. R., Lindgren T., Lu J., Granqvist C. G., and Lindquist S. E., “ Photoelectrochemical study of nitrogen-doped titanium dioxide for water oxidation, ” Journal Physics Chemical B, Vol.108, pp.5995-6003, 2004.
Umebayashi T., Yamaki T., Itoh H., and Asai K., “ Band gap narrowing of titanium dioxide by sulfur doping, ” Applied physics letters, Vol.81, pp.454-456, 2002.
Vorontsov A. V., Kurkin E. N.,y and Savinov E. N., “ Study of TiO2 deactivation during gaseous acetone photocatalytic oxidation, ” Journal of Catalysis, Vol.186, pp.318-324, 1999.
Wilke K., Breuer H.D., “ The infuence of transition metal doping on the physical and photocatalytic properties of titania,” Journal of photochemistry and photobiology. A: Chemistry , Vol.121, pp.49-53 , 1999.
Wu K. R. , Ting C. H. , Wang J. J. , Liu W. C. , and Lin C. H., “ Characteristics of graded TiO2 and TiO2/ITO films prepared by twin DC magnetron sputtering technique,” Surface & Coatings Technology, Vol.200, pp.6030-6036, 2006.
Wu K. R. , Wang J. J. , Liu W. C. , Chen Z. S. , and Wu J. K. , “ Deposition of graded TiO2 films featured both hydrophobicand photo-induced hydrophilic properties, ” Applied Surface Science, Vol.252, pp.5829-5838, 2006.
Xu C. , Killmeyer R., Gray M. L. , and Khan S. U.M., “ Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination, ” Applied Catalysis B: Environmental, Vol.64, pp.312-317, 2006.
Yang H. , Guoa L., Yan W. , and Liu H., “ A novel composite photocatalyst for water splitting hydrogen production, ” Journal of Power Sources, Vol.159,pp.1305-1309, 2006.
Yu J., Zhao X. ,and Zhao Q., “ Photocatalytic activity of nanometer TiO2 thin flims prepared by the sol-gel method, ” Materials Chemistry and Physics, Vol.69, pp.25-29, 2001.
Yuan C.S., Hung C.H., “ Gas-phase photocatalytic degradation of trichloroethylene on pyrex pellets immobilized with Anatase TiO2, ” Journal of Chinese Institute of Environmental Engineering, Vol.23, pp.11-21, 1998.
Yuan J., Chen M., Shi J., and Shangguan W., “ Preparations and photocatalytic hydrogen evolution of N-doped TiO2 from urea and titanium tetrachloride, ” International Journal of Hydrogen Energy, Vol.31, pp.1326-1331, 2006.
Zhang S., Fujii N. ,and Nosaka Y., “ The dispersion effect of TiO2 loaded over ZSM-5 zeolite, ” Journal of Molecular Catalysis A: Chemical, Vol.129, pp.219-224, 1998.
Zhang Z., Wang C.C., Zakaria R. and Ying J.Y., “ Role of particle size in nanocrystalline TiO2-based photocatalysts, ” Journal of Physical Chemistry.B, Vol.102, pp.10871-10878, 1998.
Zorn M. E., Tompkins D. T., Zeltner W. A., and Anderson M. A. “ Photocatalytic oxidation of acetone vapor on TiO2/ZrO2 thin films,” Applied Catalysis B: Environmental,Vol.23, pp.1-8, 1999.
Zou Z., Sayama K. , and Arakawa H., “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, ” Nature, Vol.414, pp.625-627, 2001.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code