Responsive image
博碩士論文 etd-0905108-134315 詳細資訊
Title page for etd-0905108-134315
論文名稱
Title
肝癌衍生生長因子於乳癌預後之角色
Prognostic Role of Hepatoma-derived growth factor (HDGF) in Breast Cancer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
53
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-03
繳交日期
Date of Submission
2008-09-05
關鍵字
Keywords
肝癌衍生生長因子
HDGF
統計
Statistics
本論文已被瀏覽 5689 次,被下載 3
The thesis/dissertation has been browsed 5689 times, has been downloaded 3 times.
中文摘要
目的: HDGF是一個特殊的生長因子, HDGF在各種癌症的發病過程和預後扮演重要的角色,例如肝癌,胃癌和非小細胞肺癌。 本研究將探討乳癌中HDGF扮演的角色。
病人與方法: 我們以接受過手術治療的乳癌病人來做為研究HDGF表現的對象,在這71個乳癌病人中,我們探討HDGF,Ki-67,FOXO3,p53,ER和PR的差異性,包含a)惡性的組織(n = 58) b) 距離癌症較遠的乳房組織(n = 13)利用免疫化學染色法,觀察在癌症檢體中HDGF、Ki-67、FOXP3、p53、ER、PR和浸潤癌症的CD4+CD25 high T cell的表現,流式細胞儀用來偵測在PBMC中CD4+CD25 high的表現。 研究數據以ROC Curve呈現,具有意義的差異性以ANOVA來分析。
結果: 免疫化學染色法分析惡性乳癌中HDGF和CD4+CD25 high表現量相較於非癌症組織呈現有義意的升高 (P < 0.001)。 此外,HDGF和CD4+CD25high表現量與乳癌中癌化等級有高度意義的相關(P < 0.001)。 HDGF表現量與Ki-67、FOXP3、p53等標記具有正相關(P < 0.05)。 在乳癌病人的血裡HDGF和CD4+CD25high的表現也是有意義的升高 (P < 0.05)。 最後,HDGF重組蛋白能夠使PBMC中CD4+CD25 high的比率升高。
結論: 本研究發現乳癌中HDGF的過度表現的現象,與癌化等級、腫瘤覆發、細胞增生、p53過度表現、與腫瘤免疫具有關連性。 未來,HDGF可能成為乳癌診斷與治療之嶄新分子標的。
Abstract
Purpose: Hepatoma-derived growth factor (HDGF) is a novel growth factor that plays an important role in the pathogenesis and progression of a variety of cancers. The present study was designed to elucidate the role of HDGF expression in breast cancer.
Patients and Methods: Tissues were collected from patients with breast cancer who underwent surgery. The expression of HDGF, Ki-67, FOXP3, p53, ER, PR and CD4+CD25+ in 71 patients with breast cancer containing a) malignant tissue (n = 58), b) uninvolved breast tissue obtained from tissue distant from the tumor (n = 13) using immunohistochemistry (IHC). The content of CD4+CD25 high in PBMC was determined by flow cytometry. Data were expressed as ROC Curve and the significance of the differences was assessed by ANOVA.
Results: IHC analysis found that the expression level of HDGF and CD4+CD25high in tumor tissues was significantly higher than that in non-tumor tissues (P < 0.001). Besides, HDGF and CD4+CD25high expression was significantly correlated with tumor grades of breast cancer (P < 0.05). Increased circulating HDGF and CD4+CD25high levels were found in serum from patients with breast cancer compared with serum from healthy controls (P < 0.001). The nuclear HDGF labeling index was positively correlated with Ki-67, FOXP3 and p53 in breast cancer (P < 0.05). Finally, incubation with recombinant HDGF significantly increased the content of CD4(+)CD25high T cells in peripheral blood mononuclear cells (PBMCs).
Conclusion: The present study demonstrated HDGF overexpression is correlated with tumor grades, recurrence, proliferation, and tumor immunity in breast cancer. In the future, HDGF may constitute a novel molecular target for diagnosis and treatment of breast cancer.
目次 Table of Contents
ABSTRACT 6
INTRODUCTION 7
SPEIFIC AIMS 8
MATERIALS AND 14
RESULTS 19
DISCUSSION 24
FIGURES AND LEGENDS 29
參考文獻 References
1. Klagsbrun M, Sasse J, Sullivan R, Smith JA. Human tumor cells synthesize an endothelial cell growth factor that is structurally related to basic fibroblast growth factor. Proceedings of the National Academy of Sciences of the United States of America 1986;83(8):2448-52.
2. Everett AD, Stoops T, McNamara CA. Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem 2001;276(40):37564-8.
3. Hu TH, Huang CC, Liu LF, et al. Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 2003;98(7):1444-56.
4. Bernard K, Litman E, Fitzpatrick JL, et al. Functional proteomic analysis of melanoma progression. Cancer research 2003;63(20):6716-25.
5. Zhang J, Ren H, Yuan P, Lang W, Zhang L, Mao L. Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells. Cancer research 2006;66(1):18-23.
6. Chang KC, Tai MH, Lin JW, et al. Hepatoma-derived growth factor is a novel prognostic factor for gastrointestinal stromal tumors. International journal of cancer 2007;121(5):1059-65.
7. Uyama H, Tomita Y, Nakamura H, et al. Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res 2006;12(20 Pt 1):6043-8.
8. Yamamoto S, Tomita Y, Hoshida Y, et al. Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res 2006;12(1):117-22.
9. Nakamura H, Izumoto Y, Kambe H, et al. Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein. J Biol Chem 1994;269(40):25143-9.
10. Izumoto Y, Kuroda T, Harada H, Kishimoto T, Nakamura H. Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus. Biochem Biophys Res Commun 1997;238(1):26-32.
11. Lukasik SM, Cierpicki T, Borloz M, Grembecka J, Everett A, Bushweller JH. High resolution structure of the HDGF PWWP domain: a potential DNA binding domain. Protein Sci 2006;15(2):314-23.
12. Sue SC, Lee WT, Tien SC, et al. PWWP module of human hepatoma-derived growth factor forms a domain-swapped dimer with much higher affinity for heparin. J Mol Biol 2007;367(2):456-72.
13. Yang J, Everett AD. Hepatoma derived growth factor binds DNA through the N-terminal PWWP domain. BMC Mol Biol 2007;8(1):101.
14. Bustin M, Lehn DA, Landsman D. Structural features of the HMG chromosomal proteins and their genes. Biochim Biophys Acta 1990;1049(3):231-43.
15. Javaherian K, Sadeghi M, Liu LF. Nonhistone proteins HMG1 and HMG2 unwind DNA double helix. Nucleic Acids Res 1979;6(11):3569-80.
16. Kuehl L, Rechsteiner M, Wu L. Relationship between the structure of chromosomal protein HMG1 and its accumulation in the cell nucleus. J Biol Chem 1985;260(18):10361-8.
17. Thanos D, Maniatis T. The high mobility group protein HMG I(Y) is required for NF-kappa B-dependent virus induction of the human IFN-beta gene. Cell 1992;71(5):777-89.
18. Gershon RK, Kondo K. Infectious immunological tolerance. Immunology 1971;21(6):903-14.
19. Berendt MJ, North RJ. T-cell-mediated suppression of anti-tumor immunity. An explanation for progressive growth of an immunogenic tumor. The Journal of experimental medicine 1980;151(1):69-80.
20. Chakraborty NG, Twardzik DR, Sivanandham M, Ergin MT, Hellstrom KE, Mukherji B. Autologous melanoma-induced activation of regulatory T cells that suppress cytotoxic response. J Immunol 1990;145(7):2359-64.
21. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155(3):1151-64.
22. Nishimura E, Sakihama T, Setoguchi R, Tanaka K, Sakaguchi S. Induction of antigen-specific immunologic tolerance by in vivo and in vitro antigen-specific expansion of naturally arising Foxp3+CD25+CD4+ regulatory T cells. International immunology 2004;16(8):1189-201.
23. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science (New York, NY 2003;299(5609):1057-61.
24. Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nature genetics 2001;27(1):20-1.
25. Morgan ME, van Bilsen JH, Bakker AM, et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Human immunology 2005;66(1):13-20.
26. Lim HW, Hillsamer P, Banham AH, Kim CH. Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol 2005;175(7):4180-3.
27. Beyer M, Kochanek M, Giese T, et al. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 2006;107(10):3940-9.
28. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. The Journal of experimental medicine 2000;192(2):295-302.
29. Belkaid Y, Rouse BT. Natural regulatory T cells in infectious disease. Nature immunology 2005;6(4):353-60.
30. Ikemoto T, Yamaguchi T, Morine Y, et al. Clinical roles of increased populations of Foxp3+CD4+ T cells in peripheral blood from advanced pancreatic cancer patients. Pancreas 2006;33(4):386-90.
31. Kono K, Kawaida H, Takahashi A, et al. CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol Immunother 2006;55(9):1064-71.
32. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B. Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 2003;9(2):606-12.
33. Yamamoto S, Tomita Y, Hoshida Y, et al. Expression level of hepatoma-derived growth factor correlates with tumor recurrence of esophageal carcinoma. Annals of surgical oncology 2007;14(7):2141-9.
34. Yoshida K, Tomita Y, Okuda Y, et al. Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma. Annals of surgical oncology 2006;13(2):159-67.
35. Cao M, Cabrera R, Xu Y, et al. Hepatocellular carcinoma cell supernatants increase expansion and function of CD4(+)CD25(+) regulatory T cells. Laboratory investigation; a journal of technical methods and pathology 2007;87(6):582-90.
36. Shevach EM, Tran DQ, Davidson TS, Andersson J. The critical contribution of TGF-beta to the induction of Foxp3 expression and regulatory T cell function. European journal of immunology 2008;38(4):915-7.
37. Marubuchi S, Okuda T, Tagawa K, et al. Hepatoma-derived growth factor, a new trophic factor for motor neurons, is up-regulated in the spinal cord of PQBP-1 transgenic mice before onset of degeneration. Journal of neurochemistry 2006;99(1):70-83.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.59.231
論文開放下載的時間是 校外不公開

Your IP address is 18.224.59.231
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code