Responsive image
博碩士論文 etd-0905110-185616 詳細資訊
Title page for etd-0905110-185616
論文名稱
Title
印尼奇蟾魚 (Allenbatrachus grunniens) 的魚鰾形態與其聲音類型
The swimbladder morphology and vocal repertoire of the grunting toadfish, Allenbatrachus grunniens (Batrachoididae)
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
82
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-26
繳交日期
Date of Submission
2010-09-05
關鍵字
Keywords
蟾魚科、聲音訊號、發音肌、魚鰾形態、親緣關係
Sonic muscle, Acoustic signal, Batrachoididae, Swimbladder morphology, Molecular phylogeny
統計
Statistics
本論文已被瀏覽 5719 次,被下載 6
The thesis/dissertation has been browsed 5719 times, has been downloaded 6 times.
中文摘要
蟾魚為利用發音肌收縮使魚鰾共振產生聲訊的發聲魚類典型代表,也是魚類聲學中研究最透徹的魚種之ㄧ。過去已研究過的魚類多為單一個魚鰾 (包括多數的蟾魚),但印尼奇蟾魚 (Allenbatrachus grunniens) 卻擁有兩個完全分離且大小相近的魚鰾。其成對的魚鰾分別位在體軸兩側,而在兩個魚鰾的側面又各有一塊內生型的發聲肌附於其上。由於此發聲構造的獨特性,本研究藉由聲訊分析、形態比較和分子親緣鑑定,希望能了解印尼奇蟾魚特化型的魚鰾與其聲訊特徵的關係,並探討這種特化的魚鰾形態是否為一演化分支上的共有衍徵 (synapomorphy)。結果顯示,印尼奇蟾魚主要會產生兩大類的聲音:Boatwhistle 和 Grunt。Boatwhistle 持續時間較長,屬諧波 (harmonic) 之聲訊,多半會連續發出數個叫聲。相較之下,Grunt則較短促,亦為諧波的聲訊,可能一次僅產生一個聲音訊號或是一連串的訊號。另外,在少部分的聲訊中有發現有拍 (acoustic beats) 的現象,這種聲訊亦在三刺擬蟾魚 (Batrachomoeus trispinosus) 被發現過。由於三刺擬蟾魚也被指出擁有的兩個大小不同且分離的魚鰾,因此推測拍可能是利用兩個獨立且大小不同魚鰾產生聲訊的關鍵特徵。形態比較結果發現,魚鰾的大小與在左或右邊以及雌雄之間並沒有顯著差異,但雌魚的發音肌寬度、厚度及重量都顯著大於雄魚。推測雌魚的發聲能力和發聲的頻繁度可能比先前其他相關研究所認定的還要高。此外,雖然雌雄間的發音肌肌纖維總面積沒有差異,但雌魚發音肌肌纖維的收縮肌原纖維 (contractile myofibrillar) 區域較雄魚大且有顯著差異;雄魚則是中間核心構造 (central core) 的區域顯著大於雌魚。由於肌纖維的中間核心構造具有豐富的粒線體,因此較大的中間核心構造能增加發音肌對疲勞的耐受力,這也讓雄魚的發音肌具有長時間快速收縮的能力。由蟾魚魚鰾形態推導所得的親緣關係與利用COI 基因序列所建構的親緣關係樹相吻合。具有兩個完全分離魚鰾之印尼奇蟾魚 (A. grunniens) 和三刺擬蟾魚 (B. trispinosus) 為最近親。
Abstract
Batrachoididae, one of the most well-studied soniferous fishes, are typical examples of fish using intrinsic sonic muscles to excite vibration of swim bladder to emit sound. Most fishes possess a single swim bladder including the Batrachoididae. However, the grunting toadfish (Allenbatrachus grunniens) was found to have two separated swim bladders located in the dorsal part of the abdominal cavity; the size of the swim bladders were quite similar. Sonic muscles were firmly attached to the lateral side of each swim bladder. The aims of this study were to (1) investigate the specialized swimbladder morphology and the acoustic signals of the grunting toadfish (A. grunniens), (2) to falsify the hypothesis that this unique form of swim bladder is a synapomorphic character, and species that possess this character are sister groups. The vocal repertoire in grunting toadfish can generally divided into two types – grunt and boatwhistle. Grunts were harmonic signals with shorter call duration, and could be emitted alone as single grunt (i.e., hand-held grunt) or in series (known as grunt train). Boatwhistles were also hamonic but much longer in call duration and usually appeared in succession. A small portion of signals were found to have acoustic beats, which was previously described in the three-spined toadfish (Batrachomoeus trispinosus), which also possess a pair of swim bladders. Therefore, signals with acoustic beats may be a key character for generating sound by two separated swim bladders. Comparing the morphological measurements of swim bladders indicated that there were no significant differences between swim bladders on different sides. However, comparisons between genders showed that the width, thickness, and weight of sonic muscle in females were significantly higher than males. Less wide sonic muscles with shorter sonic muscle fibers may enables the muscle to contract at a higher velocity in male fishes. However, females were found to have thicker sonic muscle, which indicated that the vocal ability in females may be higher than it was expected. The sonic muscle fibers of females have a larger myofibrillar region compared with males, which have a relatively larger central core. These characters may increase the fatigue-resistance of sonic muscle in males, which can contract at a relatively higher rate for a longer duration. Species with two separated swim bladders were found to be sister group in the molecular phylogenetic tree, implying that this specialized morphological character is synapomorphy.
目次 Table of Contents
Acknowledgments i
Abstract (in Chinese) ii
Abstract iv
Contents vi
Table legends vii
Figure legends viii
Introduction 1
Materials and methods 7
Results 15
Discussions 23
References 28
Tables 33
Figures 42
Curriculum vitae 71
參考文獻 References
Akamatsu, T., T. Okumura, N. Novarini, and H. Y. Yan. 2002. Empirical refinements applicable to the recording of fish sounds in small tanks. The Journal of the Acoustical Society of America 112:3073-3082.
Amorim, M. C. P. 2006. Diversity of sound production in fish. Pages 71-104. In F. Ladich, S. P. Collin, P. Moller and B. G. Kapoor, editors. Communication in Fishes, Vol. 1. Science Publishers, Enfield, New Hampshire.
Amorim, M. C. P., P. J. Fonseca, and V. C. Almada. 2003. Sound production during courtship and spawning of Oreochromis mossambicus: male–female and male–male interactions. Journal of Fish Biology 62(3):658-672.
Amorim, M. C. P., J. M. Simões, and P. J. Fonseca. 2008. Acoustic communication in the Lusitanian toadfish, Halobatrachus didactylus: evidence for an unusual large vocal repertoire. Journal of the Marine Biological Association of the UK 88:1069-1073.
Amorim, M. C. P., and R. O. Vasconcelos. 2008. Variability in the mating calls of the Lusitanian toadfish Halobatrachus didactylus: cues for potential individual recognition. Journal of Fish Biology 73(6):1267-1283.
Amorim, M. C. P., R. O. Vasconcelos, J. F. Marques, and F. Almada. 2006. Seasonal variation of sound production in the Lusitanian toadfish Halobatrachus didactylus. Journal of Fish Biology 69(6):1892-1899.
Amorim, M. C. P., R. O. Vasconcelos, and B. Parreira. 2009. Variability in the sonic muscles of the Lusitanian toadfish (Halobatrachus didactylus): acoustic signals may reflect individual quality. Canadian Journal of Zoology 87(8):718-725.
Barimo, J. F., and M. L. Fine. 1998. Relationship of swim-bladder shape to the directionality pattern of underwater sound in the oyster toadfish. Canadian Journal of Zoology 76(1):134-143.
Bass, A. H., and F. Ladich. 2008. Vocal–Acoustic communication: from neurons to behavior. Pages 253-278. In A. Popper, R. Fay, J. Webb, editors. Fish Bioacoustics, Vol. 32. Springer, New York.
Bass, A. H., and J. R. McKibben. 2003. Neural mechanisms and behaviors for acoustic communication in teleost fish. Progress in Neurobiology 69(1):1-26.
Brantley, R. K., and A. H. Bass. 1994. Alternative male spawning tactics and acoustic signals in the plainfin midshipman fish Porichthys notatus girard (teleostei, Batrachoididae). Ethology 96(3):213-232.
Connaughton, M. A. 2004. Sound generation in the searobin (Prionotus carolinus), a fish with alternate sonic muscle contraction. Journal of Experimental Biology 207(10):1643-1654.
Connaughton, M. A., M. L. Fine, and M. H. Taylor. 1997. The effects of seasonal hypertrophy and atrophy on fiber morphology, metabolic substrate concentration and sound characteristics of the weakfish sonic muscle. Journal of Experimental Biology 200(18):2449-2457.
Connaughton, M. A., M. H. Taylor, and M. L. Fine. 2000. Effects of fish size and temperature on weakfish disturbance calls: implications for the mechanism of sound generation. Journal of Experimental Biology 203(9):1503-1512.
dos Santos, M. E., T. Modesto, R. J. Matos, M. S. Grober, R. Oliveira, and A. Canário. 2000. Sound production by the Lusitanian toadfish, Halobatrachus didactylus. Bioacoustics 10(11):309-321.
Edds-Walton, P. L., L. A. Mangiamele, and L. C. Rome. 2002. Variations of pulse repetition rate in boatwhistle sounds from oyster toadfish Opsanus tau around Waquoit bay, Massachusetts. Bioacoustics 13(2):153-174.
Fine, M. L. 1978. Seasonal and geographical variation of the mating call of the oyster toadfish Opsanus tau L. Oecologia 36(1):45-57.
Fine, M. L., B. Bernard, and T. M. Harris. 1993. Functional morphology of toadfish sonic muscle fibers: relationship to possible fiber division. Canadian Journal of Zoology 71(11):2262-2274.
Fine, M. L., C. B. King, and T. M. Cameron. 2009. Acoustical properties of the swimbladder in the oyster toadfish Opsanus tau. Journal of Experimental Biology 212(21):3542-3552.
Fine, M. L., K. L. Malloy, C. King, S. L. Mitchell, and T. M. Cameron. 2001. Movement and sound generation by the toadfish swimbladder. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 187(5):371-379.
Fine, M. L., K. R. Pennypacker, K. A. Drummond, and C. R. Blem. 1986. Concentration and location of metabolic substrates in fast toadfish sonic muscle. Copeia 1986(4):910-915.
Fine, M. L., and R. F. Thorson. 2008. Use of passive acoustics for assessing behavioral interactions in individual toadfish. Transactions of the American Fisheries Society 137:627-637.
Greenfield, D. W. 1997. Allenbatrachus, a new genus of indo-pacific toadfish (Batrachoididae). Pacific Science 3(51):306-313.
Greenfield, D. W., R. Winterbottom, and B. B. Collette. 2008. Review of the toadfish genera (teleostei: Batrachoididae). Proceedings of the California Academy of Sciences 59:665-710.
Guindon, S., and O. Gascuel. 2003. A simple, fast, and accurate method to estimate large phylogenies by maximum likelihood. Systematic Biology 52(5):696-704.
Huelsenbeck, J. P., and F. Ronquist. 2005. Bayesian analysis of molecular evolution using MrBayes. Pages 183-226. In R. Nielsen, editor. Statistical Methods in Molecular Evolution. Springer, New York.
Kaatz, I. M. 2002. Multiple sound-producing mechanisms in teleost fishes and hypotheses regarding their behavioural significance. Bioacoustics 12:230-232.
Kasumyan, A. O. 2008. Sounds and sound production in fishes. Journal of Ichthyology 48(11):981-1030.
Ladich, F., and A. H. Bass. 2003. Underwater sound generation and acoustic reception in fishes with some notes on frogs. Pages 173-193. In S. P. Collin and N. J. Marshall, editors. Sensory Processing in Aquatic Environments. Springer, New York.
Luczkovich, J. J., D. A. Mann, and R. A. Rountree. 2008. Passive acoustics as a tool in fisheries science. Transactions of the American Fisheries Society 137:533-541.
Maruska, K. P., and A. F. Mensinger. 2009. Acoustic characteristics and variations in grunt vocalizations in the oyster toadfish Opsanus tau. Environmental Biology of Fishes 84(3):325-337.
McKibben, J. R., and A. H. Bass. 1998. Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. The Journal of the Acoustical Society of America 104:3520-3533.
Modesto, T., and A. V. M. Canario. 2003. Hormonal control of swimbladder sonic muscle dimorphism in the Lusitanian toadfish Halobatrachus didactylus. Journal of Experimental Biology 206(19):3467-3477.
Modesto, T., and A. V. M. Canário. 2003. Morphometric changes and sex steroid levels during the annual reproductive cycle of the Lusitanian toadfish, Halobatrachus didactylus. General and Comparative Endocrinology 131(3):220-231.
Parmentier, E., J. P. Lagardere, J. B. Braquegnier, P. Vandewalle, and M. L. Fine. 2006. Sound production mechanism in carapid fish: first example with a slow sonic muscle. Journal of Experimental Biology 209(15):2952-2960.
Popper, A. N., R. R. Fay, C. Platt, and O. Sand. 2003. Sound detection mechanisms and capabilities of teleost fishes. Pages 3-38. In S. P. Collin and N. J. Marshall, editors. Sensory Processing in Aquatic Environments. Springer, New York.
Posada, D. 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25(7):1253-1256.
Rice, A. N., and A. H. Bass. 2009. Novel vocal repertoire and paired swimbladders of the three-spined toadfish, Batrachomoeus trispinosus: insights into the diversity of the Batrachoididae. Journal of Experimental Biology 212(9):1377-1391.
Rome, L. C., and S. L. Lindstedt. 1998. The quest for speed: muscles built for high-frequency contractions. News in Physiological Sciences 13:261-268.
Ronquist, F., and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572-1574.
Sisneros, J. A., P. W. Alderks, K. Leon, and B. Sniffen. 2009. Morphometric changes associated with the reproductive cycle and behaviour of the intertidal-nesting, male plainfin midshipman Porichthys notatus. Journal of Fish Biology 74(1):18-36.
Thorson, R. F., and M. L. Fine. 2002. Crepuscular changes in emission rate and parameters of the boatwhistle advertisement call of the gulf toadfish, Opsanus beta. Environmental Biology of Fishes 63(3):321-331.
Vasconcelos, R. O., and F. Ladich. 2008. Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. Journal of Experimental Biology 211(4):502.
Vasconcelos, R. O., J. M. Simões, V. C. Almada, P. J. Fonseca, and M. C. P. Amorim. 2010. Vocal behavior during territorial intrusions in the Lusitanian toadfish: boatwhistles also function as territorial 'keep-out' signals. Ethology 116(2):155-165.
Verzijden, M. N., J. van Heusden, N. Bouton, F. Witte, C. ten Cate, and H. Slabbekoorn. 2010. Sounds of male Lake Victoria cichlids vary within and between species and affect female mate preferences. Behavioral Ecology 21(3):548-555.
Yan, H. Y., M. L. Fine, N. S. Horn, and W. E. Colon. 2000. Variability in the role of the gasbladder in fish audition. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 186(5):435-445.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 44.222.225.12
論文開放下載的時間是 校外不公開

Your IP address is 44.222.225.12
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code