Responsive image
博碩士論文 etd-0905111-110212 詳細資訊
Title page for etd-0905111-110212
論文名稱
Title
可長時間穩定運作之被動式可攜式直接甲醇燃料電池組設計與研發
Design and Development of a Long-term Operating and Without Performance Decay Passive Portable DMFC Stack
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-30
繳交日期
Date of Submission
2011-09-05
關鍵字
Keywords
crossover、碳纖維束單極板、直接甲醇燃料電池、自然進氣、可攜式
DMFC, carbon fiber monopolar plate, crossover, air-breathing, portable DMFC stacks
統計
Statistics
本論文已被瀏覽 5666 次,被下載 518
The thesis/dissertation has been browsed 5666 times, has been downloaded 518 times.
中文摘要
本論文主要在研發可長時間穩定操作的DMFC電池組。為達到此目標,需從多方面著手,包含選用化學穩定電池材料,操作條件也必須維持穩定,電池保存時,避免環境條件變動改變電池MEA結構,如此始可使電池維持長時間穩定操作。本研究首先找出化學不穩定的零件及材料,避免其污染電極。接著本研究設計不需動力可穩定補充消耗燃料的補充裝置,並將此裝置應用在16-cell DMFC電池組。最後比較有連續補充與無補充燃料,兩種不同操作條件電池的穩定性。從這些實驗可發現,在適當燃料的補充下,確實可長時間維持電池穩定操作。
傳統的直接甲醇燃料電池之燃料供應,通常使用pump使燃料循環使用,因此構造較為複雜,體積不易縮小,不利於攜帶。若是採用被動式的操作,燃料完全儲存於反應室,雖然構造簡單,但電池會有燃料補充的問題。近年來,有使用甲醇蒸汽的燃料供應方式,雖然能使用濃度較高的甲醇來延長操作時間,但蒸發速率有限,供應率很難控制,尤其需較大電流時,蒸發速率太慢無法及時補充足夠燃料,且CROSSOVER問題亦難以克服。
本研究發展的16-cell DMFC依照電流大小,可持續補充適量電池所消耗的燃料。燃料補充藉由控制拉閘來調節甲醇與水的供應,燃料根據反應電流來補充陽極反應室所消耗及洩漏的燃料,使陽極反應室甲醇濃度一直維持在適當範圍,此補充裝置利用擴散及重力效應,不需使用燃料pump,故不會消耗電池的動力。
Abstract
In this thesis, a long-term operation direct methanol fuel cell (DMFC) stack is developed. In order to reach this goal required in many ways, including select highly chemical stability materials, operating conditions must also be stable, and avoid changing the MEA structure when preserved, then can cause the DMFC to maintain stable operation for a long time. First of all, in order to avoid contaminating electrode, this study find out the chemical instability materials. Second, this study design a device which does not require power then can stability supply consumption fuel, and apply this device in 16-cell DMFC. Finally compare with continuous fuel supply and without fuel supply, two operating conditions performance stability. From these experiments can find out, the DMFC indeed in stable operation for a long time under the appropriate supplement.
Traditional fuel supply systems typically using the pump fuel recycling, so the structure is more complex, difficult to reduce the volume, and not conducive to carry. If using a passive operation, fuel completely stored in the reaction Chamber, even though the structure is simple there will be a problem with fuel supply. In recent years, someone use vapors of methanol to supply the fuel, although can use high concentration methanol to extend operating time, but the evaporation rate is difficult to control, the fuel can’t be supplied in time, especially when the large current is needed, and CROSSOVER issues would be difficult to overcome.
In our 16-cell DMFC, continues to add appropriate amount of fuel consumed which according to the different current. The fuel supply device with a sliding control plate which can control methanol and water diffusion rate respectively. This device only to provide consumed by reaction and leaked fuel in anode chamber, so that the methanol concentration can maintained in the proper range at anode chamber. This device only use diffusion and gravity effects, don't use a fuel pump, so will not consume DMFC power.
目次 Table of Contents
目錄.........................................................................................i
圖目錄....................................................................................iv
表目錄..................................................................................viii
摘要........................................................................................ix
Abstract.................................................................................xi
第一章 緒論 ...........................................................................1
1.1 前言..................................................................................1
1.2 燃料電池的種類..............................................................2
1.3 文獻回顧..........................................................................6
1.4 研究目的........................................................................16
第二章 直接甲醇燃料電池(DMFC)..............................18
2.1 前言................................................................................18
2.2 工作原理........................................................................19
2.3 直接甲醇燃料電池之結構............................................21
2.4 膜極組( Membrane Electrode Assembly , MEA )...22
2.4.1 質子交換膜................................................................22
2.4.2 催化層........................................................................24
2.4.3 擴散層(diffusion layer).......................................26
2.5 甲醇於DMFC中之理論分析........................................27
2.6 燃料電池極化現象.......................................................28
2.6.1 燃料電池的極化曲線(polarization curve).............29
第三章 DMFC電池組設計與元件製作.............................31
3.1 直接甲醇燃料電池組設計構想...................................31
3.2 DMFC的製作...............................................................32
3.3 碳纖維束的製作...........................................................36
3.4 MEA的製作...................................................................39
3.4.1 質子交換膜的前處理................................................39
3.4.2 裁切電極....................................................................40
3.4.3 MEA熱壓....................................................................40
第四章 研究方法.................................................................41
4.1 實驗材料與設備...........................................................41
4.2 實驗步驟.......................................................................43
第五章 結果與討論.............................................................45
5.1 實驗條件.......................................................................46
5.2 STACK材料對DMFC性能的影響...............................47
5.2.1 螺絲、O-ring、stack對DMFC性能的影響............48
5.2.2 碳纖維束單極板對電池性能的影響........................48
5.2.3 黏合膠對電池的影響................................................49
5.3 燃料擴散膜與燃料補充...............................................50
5.3.1 甲醇擴散材料............................................................50
5.3.2 水擴散材料................................................................50
5.3.3 儲存室到反應室的燃料補充....................................51
5.4 16-CELL電池組...........................................................51
5.4.1 碳纖維束....................................................................52
5.4.2 單cell的性能..............................................................52
5.4.3 16-cell的性能............................................................53
5.5 甲醇消耗率與操作電流................................................53
5.6 燃料補充速率對輸出電壓的影響................................54
5.6.1 無補充燃料,輸出電壓之穩定性............................54
5.6.2 有補充燃料,輸出電壓之穩定性............................55
第六章 結論與建議.............................................................57
參考文獻..............................................................................59
參考文獻 References
1.“The effect of methanol concentration on the performance of a passive DMFC,” J.G. Liu, T.S. Zhao *, R. Chen, C.W. Wong, Electrochemistry Communications 7 (2005) 288–294.
2.“Development of a small DMFC bipolar plate stack for portable applications,” C.Y. Chen, J.Y. Shiu, Y.S. Lee, Journal of Power Sources 159 (2006) 1042–1047.
3.“Design and testing of a passive planar three-cell DMFC,” Jonathan J. Martin a, Weimin Qian a,b, Haijiang Wang a, Vladimir Neburchilov a, Jiujun Zhang a, David P. Wilkinson a,b, Zhaorong Changc, Journal of Power Sources 164 (2007) 287–292.
4.“A direct methanol fuel cell system with passive fuel delivery based on liquid surface tension,” Yuming Yang, Yung C. Liang, J Journal of Power Sources 165 (2007) 185–195.
5.“低成本自然吸氣式可攜式直接甲醇燃料電池組開發與製作研究,” 洪嘉隆,碩士論文,國立中山大學機械與機電工程學系,中華民國九十六年七月.
6.“A self-regulated passive fuel-feed system for passive direct methanol fuel cells,” Y.H. Chan, T.S. Zhao, R. Chen, C. Xu, Journal of Power Sources 176 (2008) 183–190.
7.“Development of a 1 W passive DMFC,” Zhen Guo, Amir Faghri, International Communications in Heat and Mass Transfer 35 (2008) 225–239.
8.“A small mono-polar direct methanol fuel cell stack with passive operation,” Y.H. Chan, T.S. Zhao, R. Chen, C. Xu, Journal of Power Sources 178 (2008) 118–124.
9.“Development of a passive direct methanol fuel cell (DMFC) twin-stack for long-term operation,” Yingli Zhua, Junsheng Lianga,b, Chong Liua,b, Tianliang Maa, LidingWanga,b, JJournal of Power Sources 193 (2009) 649–655.
10.“Investigation of passive DMFC mini-stacks at ambient temperature,” V. Baglio, A. Stassi, F.V. Matera, V. Antonucci, A.S. Arico, Electrochimica Acta 54 (2009) 2004–2009.
11.“Self-regulating passive fuel supply for small direct methanol fuel cells operating in all orientations,” N. Paust a, S. Krumbholzb, S. Munta, C. Mullerc, P. Koltaya, R. Zengerle a, C. Zieglera, Journal of Power Sources 192 (2009) 442–450.
12.“直接甲醇燃料電池性能衰退原因探討及16-cell電池組製作與應用研究,” 黃鈺偉,碩士論文,國立中山大學機械與機電工程學系,中華民國九十八年九月.
13.“Development of a passive direct methanol fuel cell stack for high methanol concentration,” Takuya Tsujiguchia, Mohammad Ali Abdelkareemb, Takuya Kudoa, Nobuyoshi Nakagawaa, Tatehiro Shimizuc, Michio Matsudac, Journal of Power Sources 195 (2010) 5975–5979.
14.“Vertical operation of passive direct methanol fuel cell employing a porous carbon plate,” Mohammad Ali Abdelkareema, Tsukasa Yoshitoshib, Takuya Tsujiguchib, Nobuyoshi Nakagawab, J Journal of Power Sources 195 (2010) 1821–1828.
15.“The performance and mechanism of multi-step activation of MEA for DMFC,” Guicheng Liu, Junyuan Xu, Tongtao Wang, Tingting Zhao, Meng Wang, Yituo Wang, Jianling Li, Xindong Wang*, international journal of hydrogen energy 35 ( 2010 ) 12341-12345.
16.“The fading behavior of direct methanol fuel cells under a start-run-stop operation”, Nutthapon Wongyao,Apochai Therdthianwongb,and Supaporn Therdthianwongc,Fuel 89 (2010) 971–977.
17.“Water management of the DMFC passively fed with a high concentration methanol solution,” Xianglin Li, Amir Faghri, Chao Xu, international journal of hydrogen energy 35 (2010) 8690-8698.
18.“可長時間運作性能不易衰退的DMFC電池組研發,” 陳建銘,碩士論文,國立中山大學機械與機電工程學系,中華民國九十九年九月.
19.“影響DMFC長期運作性能之原因探討與對策研究,” 周慶宏,碩士論文,國立中山大學機械與機電工程學系,中華民國九十九年八月.
20.“Performance characteristics of a novel tubular-shaped passive direct methanol fuel cell,” Travis Ward, Xianglin Li, Amir Faghri, JJournal of Power Sources 196 (2011) 6264–6273.
21.“Improving the water management and cell performance for the passive vapor-feed DMFC fed with neat methanol,” Chao Xu 1, Amir Faghri*, Xianglin Li, international journal of hydrogen energy 36 ( 2011) 8468-8477.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code