Responsive image
博碩士論文 etd-0905111-110349 詳細資訊
Title page for etd-0905111-110349
論文名稱
Title
可調節式燃料補充以避免性能衰退的被動式可攜式直接甲醇燃料電池研發
Studies and Development of no Decay Passive Portable DMFCs by Adjusting the Supplying Rate of Fuel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-08-11
繳交日期
Date of Submission
2011-09-05
關鍵字
Keywords
碳纖維束、反應室、儲存槽、觸媒毒化、直接甲醇燃料電池
carbon fiber bunch, reaction chamber, chamber, crossover, DMFC
統計
Statistics
本論文已被瀏覽 5649 次,被下載 282
The thesis/dissertation has been browsed 5649 times, has been downloaded 282 times.
中文摘要
本論文主要在研發可長時間運作,性能穩定不易衰退的被動式可攜式直接甲醇燃料電池(DMFC)。由於傳統被動式DMFC的燃料是儲存於陽極反應室內,操作時,陽極甲醇溶液的濃度會一直下降,當濃度降到某一值(約1.5M)以下,性能便會開始下降。若是將甲醇濃度提高,雖可增加降到此值的使用時間,但初期容易發生Crossover,毒化陰極觸媒,且較長時間工作時,甲醇濃度仍會下降,無法維持電池性能穩定不衰退。
為了能達到長時間性能穩定操作,因此維持反應室內甲醇溶液濃度的穩定為必要條件,本論文除改良本實驗室初期的純甲醇補充設計,另外增加水的補充槽。利用控制閘門控制擴散膜面積調整燃料擴散流率,並使用棉線管,將補充的高濃度甲醇溶液輸送至陽極反應室,以補充反應所消耗的甲醇與水。
實驗結果顯示,初始甲醇溶液2M,添加量1.3 c.c.,在185mA (82.2mA/cm2)定電流操作下,沒有補充甲醇時,約15分鐘後性能便開始下降。若補充適當甲醇溶液,則可使性能維持較長時間穩定的操作。但補充過多的甲醇溶液,在長時間後,則會使反應室甲醇溶液濃度持續升高,導致Crossover造成性能衰退。補充過少的甲醇溶液,反應室內甲醇溶液濃度逐漸下降,導致性能下降。所以適當的補充甲醇溶液是長時間穩定操作的重要關鍵。本研究依據操作電流及甲醇溶液的蒸散速率,以適當流量濃度的甲醇溶液補充反應式的燃料,使反應室能維持適當甲醇濃度範圍,以維持電池性能穩定。
Abstract
In this thesis, a long-term operation direct methanol fuel cell (DMFC) stack with no performance decay is developed and improved. In a traditional passive portable DMFC, the Methanol solution is storage at anode Reaction chamber. The performance will drop after a short period due to the concentration of Methanol solution becoming lower (about 1.5M). Although High concentration of Methanol solution could increase the operation time, but it will couse crossover to poison the cathode Pt particle, and it is unable to keep long-term operation stably either.
In order to achieve long-term operation stably, to maintain the concentration of methanol solution in the anode chamber will be very important. In our fuel supply stack, there are two chambers in the stack to storage methanol and water, and we could control the supplying rate by adjusting the diffusion area to control the diffusion rate of methanol and water. And the methanol solution deliver to anode reaction chamber by cotton tube.
If the anode reaction chamber is filled with 1.3㏄, 2M methanol solution and without any fuel supply, operating on the 185mA constant current (82.2mA/cm2 ). The results shows that the performance begin decay about after 15minutes. If the appropriate amount of methanol and water is supplied, the performance can be steady in a long-term operation.
But if supply too much methanol solution, the concentration in the anode reaction chamber will rise up, and the high concentration will cause crossover poised the cathode catalyst, and the performance will decay. If supply rate not enough, the concentration in the anode reaction chamber will become lower, and the performance will decay after long-term operation. In this study, based on operate current and the rate of evaporation of methanol solution, to supply appropriate supplying rate and concentration of methanol solution to anode reaction chamber, could keep the performance in a steady output.
目次 Table of Contents
目錄………………i
圖目錄………………iv
摘要………………vii
Abstract……………… ix
第一章 緒論………………1
1.1前言………………1
1.2燃料電池………………2
1.3文獻回顧………………4
1.4研究目的………………14
第二章 直接甲醇燃料電池理論分析………………16
2.1 DMFC工作原理………………16
2.2.1甲醇於DMFC中之理論消耗量………………19
2.1.2燃料電池質傳現象………………19
2.1.3燃料電池極化現象………………20
2.2直接甲醇燃料電池基本結構………………22
2.2.1膜電極組( Membrane Electrode Assembly, MEA )………………22
2.2.1.1質子交換膜………………22
2.2.1.2電極………………24
2.2.1.3觸媒層………………25
2.2.1.4擴散層………………27
2.2.1.5電流收集板………………27
第三章 DMFC元件製作………………31
3.1甲醇與水儲存槽設計概念………………31
3.2甲醇儲存槽的材質………………32
3.3非均質碳纖維單極板………………33
3.3.1非均質碳纖維單極板製作流程………………33
3.4 MEA製作………………35
3.4.1質子交換膜處理………………35
3.4.2電極預備………………36
3.4.3 MEA熱壓………………36
第四章 實驗方法………………38
4.1實驗材料與設備………………38
4.2實驗步驟………………39
第五章 實驗結果與討論………………41
5.1 實驗條件………………41
5.2儲存室擴散材料之選擇………………42
5.2.1甲醇擴散材料之選擇………………43
5.2.2水擴散材料之選擇………………43
5.2.3不同擴散面積的水擴散量測………………43
5.3補充管路設計………………44
5.3.1棉線擴散速率………………44
5.3.2棉線管製作………………45
5.3.3擴散速率與均勻度………………45
5.4不同負載的甲醇消耗量………………46
5.5 有無補充燃料對性能穩定性的影響………………46
5.5.1初始濃度2M,無補充甲醇………………46
5.5.2定電流不同補充速率對性能影響………………47
5.5.3初始濃度2M,無補充甲醇………………49
5.5.4不同電流最佳燃料供應速率………………49
第六章 結論與建議………………51
參考文獻………………53
參考文獻 References
1.“A natural-circulation fuel delivery system for direct ethanol fuel cells,” Q. Ye, T.S. Zhao, Journal of Power Sources 147 (2005) 196–202.
2.“Characterisation of a portable DMFC stack and a methanol-feeding concept,” Anders Oedegaard, Christian Hentschel, Journal of Power Sources 158 (2006) 177–187.
3.“Performance characteristics of a vapor feed passive miniature directmethanol fuel cell,” Gregory Jewett, Zhen Guo, Amir Faghri, International Journal of Heat and Mass Transfer 52 (2009) 4573–4583.
4.“Vapor feed direct methanol fuel cells with passive thermal-fluids management system,”Zhen Guo, Amir Faghri, Journal of Power Sources 167 (2007) 378–390.
5.“The performance analysis of direct methanol fuel cells with different hydrophobic anode channels,” Hung-Chun Yeh, Ruey-Jen Yang, Win-Jet Luo, Jia-You Jiang, Yean-Der Kuan, Xin-Quan Lin, Journal of Power Sources 196 (2011) 270–278.
6.“Long-term durability test for direct methanol fuel cell made of hydrocarbon membrane,” Joghee Prabhuram, N. Nambi Krishnan, Baeck Choi, Tae-Hoon Lim, Heung Yong Ha, Soo-Kil Kim, Intertional Journal of Hydrogen Energy 35(2010)6924-6933.
7.“Effect of black catalyst ionomer content on the performance of passive DMFC,” Mohammad Ali Abdelkareem, Takuya Tsujiguchi, Nobuyoshi Nakagawa, Journal of Power Sources 195 (2010) 6287–6293.
8.“Development of a 1 W passive DMFC,” Zhen Guo, Amir Faghri, International Communications in Heat and Mass Transfer 35 (2008) 225–239.
9.“A passive fuel delivery system for portable direct methanol fuel cells,” Z. Guo, Y. Cao, Journal of Power Sources 132 (2004) 86–91.
10.“Influence of diffusion layer properties on low temperature DMFC,” A. Oedegaard, C. Hebling, A. Schmitz, S. Møller-Holst, R. Tunold, Journal of Power Sources 127 (2004) 187–196.
11.“In situ visualization study of CO2 gas bubble behavior in DMFC anode flow fields,” H. Yang, T.S. Zhao, Q. Ye, Journal of Power Sources 139 (2005) 79–90.
12.“Double microporous layer cathode for membrane electrode ssembly of passive direct methanol fuel cells,” Jianyu Cao, Mei Chen, Ji Chen, Shenjun Wang, Zhiqing Zou, Zhilin Li, Intertional Journal of Hydrogen Energy 35 (2010) 4622-4629.
13.“A self-regulated passive fuel-feed system for passive direct methanol fuel cells ,” Y.H. Chan, T.S. Zhao, R. Chen, C. Xu, Journal of Power Sources 176 (2008) 183–190.
14.“Effect of carbon black additive in Pt black cathode catalyst layer on direct methanol fuel cell performance,” Guoxiong Wang, Gongquan Sun, Qi Wang, Suli Wang, Hai Sun, Qin Xin, Intertional Journal of Hydrogen Energy 35 11245-11253.
15.“Design and fabrication of pumpless small direct methanol fuel cells for portable applications,” Takahiro Shimizu, Toshiyuki Momma, Mohamed Mohamedi, Tetsuya Osaka, Srinivasan Sarangapani, Journal of Power Sources 137 (2004) 277–283.
16.“The fading behavior of direct methanol fuel cells under a start-run-stop operation,” Nutthapon Wongyao, Apichai Therdthianwong, Supaporn Therdthianwong, Fuel 89 (2010) 971–977.
17.“Methanol and water crossover in a passive liquid-feed direct,” Chao Xu, Amir Faghri, Xianglin Li, Travis Ward, Intertional Journal of Hydrogen Energy 35 (2010) 1769-1777.
18.“Development of a heterogeneous composite bipolar plate of a Proton Exchange Membrane Fuel Cell,” Ming San Lee, Long Jeng Chen,Zheng Ru He,Shih Hong Yang, Journal of Fuel Cell Science and Technology (2005).
19.“影響DMFC長期運作性能之原因探討與對策研究,” 周慶宏,碩士論文,國立中山大學機械與機電工程學系,中華民國九十九年八月.
20.“可長時間運作性能不易衰退的DMFC電池組研發,” 陳建銘,碩士論文,國立中山大學機械與機電工程學系,中華民國九十九年九月.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code