Responsive image
博碩士論文 etd-0905111-112348 詳細資訊
Title page for etd-0905111-112348
論文名稱
Title
奈米與非晶多層薄膜於聚亞醯胺基板上之變形機制
Deformation Mechanism of Amorphous/nanocrystalline Multilayer Thin Films on Polyimide Substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
120
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-25
繳交日期
Date of Submission
2011-09-05
關鍵字
Keywords
拉伸試驗、薄膜、多層膜、金屬玻璃
tensile test, thin film, multilayer, metallic glass
統計
Statistics
本論文已被瀏覽 5704 次,被下載 111
The thesis/dissertation has been browsed 5704 times, has been downloaded 111 times.
中文摘要
本實驗選用沈積於聚亞醯胺(Polyimide,PI)基板上的單層非晶質ZrCu合金薄膜、單層結晶Cu薄膜與兩者之複合多層薄膜,研究並探討在相同體積分率情況下,其微拉伸行為與層厚度之間的關係。在掃描式電子顯微鏡(Scanning electron microscope,SEM)表面形貌的觀察中可以發現,多層薄膜表面之主要由球狀區域所構成;而應力集中會發生各球狀區域間,可由垂直於拉伸方向的裂痕會沿著球狀區域擴展得知。由能量解析光譜儀(Energy dispersive X-ray spectrometer,EDS)測量之成份分析結果顯示非晶質薄膜的原子百分比為Zr46.78Cu53.22,接近預設目標之Zr50Cu50。X光繞設(X-ray diffraction,XRD)結果顯示多層薄膜結晶結構同時由非晶質ZrCu與結晶Cu所構成,在單層厚度降低時,結晶銅的正規化峰值與半高寬大小皆隨之降低。在本研究中,為取得單純由鍍膜的機械性質所產生的訊號,採用拉伸測試後減去基板貢獻的方式,再行後部的計算。以此法所獲得之單層非晶質ZrCu與單層結晶Cu之拉伸楊氏模數,接近於由微硬度壓痕測試所得數據;檢測多層膜之機械性質,可發現拉伸楊氏模數符合複合材料混合法則(Rule of Mixture)預測,可知此減去基板貢獻方法為可信賴的。隨著層厚度由100奈米降至10奈米,楊氏模數無明顯的改變。另一方面,最大應力值隨著層厚變化有明顯的改變,在層厚度為25奈米時具有相對最大的最大應力值。分析多層膜拉伸後之表面形貌,厚度的影響對於機械性質的影響可發現相同的趨勢。在本論文中對於單層與多層膜的拉伸機械性質會有詳細的研究與討論。
Abstract
The tensile behavior of the monolithic amorphous ZrCu and crystalline Cu thin films and the ZrCu/Cu multilayered thin films, coated on polyimide (PI) substrates in different layer thicknesses has been investigated. The scanning electron microscope (SEM) morphology of the as-deposited thin film is composed of sphere domains. Between the domains, stress concentration is induced. The cracks perpendicular to the loading direction would propagate along the domains. The constituent component examined by energy dispersive X-ray spectrometer (EDS) shows that the average composition (in atomic percent) amorphous thin film is Zr46.78Cu53.22, closed to the designed Zr50Cu50 goal. The X-ray diffraction (XRD) results show that the multilayered specimens are composed of both amorphous ZrCu and nanocrystalline Cu crystal structure. As the monolayer thickness become lower, the normalized peak height and grain sizes of Cu become lower. To obtain the mechanical properties of the coated films, deducting the contribution of substrates is used in this study. The tensile Young’s moduli of monolithic amorphous ZrCu and nanocrystalline Cu thin films are close to the results extracted from micro-compression. Based on the current tensile results for the moduli of multilayered thin films, the obtained mechanical data are demonstrated to be reliable and are consistent with the theoretical values predicted by Rule of Mixture. As the thickness decreases from 100 nm down to 10 nm, the tensile Young’s moduli do not vary much. On the other hand, the maximum tensile stress shows strong variation, being highest for the layer thickness of 25 nm. The deformed surface morphologies characterized by scanning electron microscopy also exhibit a similar trend. The optimum tensile properties of the monolithic and multilayered thin film combinations are examined and discussed in this thesis.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iv
Abstract v
Chapter 1 Introduction 1
1-1 Amorphous alloy 1
1-2 The development of thin film metallic glasses 2
1-3 Flexible polymer substrates 3
1-4 Motivation 4
2-1 Properties of thin film metallic glasses 7
2-1-1 Electrical properties 7
2-1-2 Magnetic properties 7
2-1-3 Thermal properties 8
2-1-4 Mechanical properties 9
2-2 Property of polyimide substrate 10
2-2-1 Characteristics of polyimide 10
2-2-2 Interface characteristics between metal and polyimide [59] 11
2-3 Uniaxial tensile test of thin films 12
Chapter 3 Experimental Procedures 15
3-1 Materials and equipment 15
3-2 Sample preparation 15
3-2-1 Substrate preparation 15
3-2-2 Preparation for thin film and multilayered thin films 16
3-3 Property measurements and analyses 17
3-3-1 SEM observations and constituent analysis 17
3-3-2 XRD analysis 18
3-3-3 Mechanical property analysis 18
Chapter 4 Results and Discussion 19
4-1 Sample preparations 19
4-2 EDS analyses 20
4-3 XRD analysis 20
4-4 SEM film surface morphology characterization 22
4-5 Mechanical property analysis 22
4-5-1 Tensile properties analysis 24
4-5-2 SEM fracture surface morphology analysis 28
Chapter 5 Conclusion 31
References 32
Tables 37
Figures 43

Table 1.1 Fundamental properties and application fields of bulk amorphous and nanocrystalline alloys [4]. 37
Table 2.1 Electrical resistivity of the thin film metallic glasses and conventional electricaldevice materials [43]. 38
Table 2.2 Dipole screening and localization energies [59]. 38
Table 2.3 Mechanical testing techniques: advantage and liabilities [60]. 39
Table 4.1 The composition quantity analysis of ZrCu amorphous thin film characterized by EDS. 40
Table 4.2 Typical Properties of Kapton® FPC at 23 °C (73°F) 41
Table 4.3 Tensile mechanical properties of clean PI stuck with the spacers stuck by the the tradition double-sided tape, 3MTM instant glue and the 3MTM V1805 double-sided tape. 42

Figure 1.1 Two typical arrangement of atomic structures in (a) crystal and (b) amorphous alloy. The inset Fourier transforms in left corner shows the structural differences [2]. 43
Figure 2.1 Resistivity as a function of annealing temperature of Pd-TFMG [44]. 44
Figure 2.2 TEM bright-field images and diffraction patterns of films in asdeposited and annealed conditions [47]. 45
Figure 2.3 Magnetic force microscopy images of films in asdeposited and annealed conditions [47]. 46
Figure 2.4 DSC traces of the Φ1 mm rods for compositions ranging from Cu40Zr60 to Cu66Zr34 [48]. 47
Figure 2.5 Variation of the glass transition and crystallization temperature with the Zr content [48, 49, 50, 51, 52]. 48
Figure 2.6 TTT diagram for the onset of crystallization of metallic glass powder heated to selected temperatures at 40 K/min [53]. 49
Figure 2.7 Relationship between tensile strength or Vickers hardness (H) and E for various bulk amorphous alloys [4]. 49
Figure 2.8 The illustration of the shear transformation zones (STZs) (a) before shear deformation and (b) after shear deformation in two-dimensional space [68]. 50
Figure 2.9 Schematic drawing of the fluid zones of amorphous alloy [68]. 51
Figure 2.10 Structural formulae of polymer substrate. The upper three formulae is three forms of polyimide, the last formula is polyetheretherketon [59]. 52
Figure 2.11 FT-IRA difference spectra for about monolayer coverages of (a) gold, (b) silver, (c) palladium, (d) copper, (e) chromium, and (f) potassium [59]. 53
Figure 2.12 Typical stress-strain curve for a metal under uniaxial tension [60]. 54
Figure 3.1 The flow chart of the experimental procedure in this study. 55
Figure 3.2 The pattern of 0.3-mm-thick stainless masks during sputtering. 56
Figure 3.3 Schematic representation of specimen dimensions. The squire of 3 mm × 57
30 mm is fully deposited with the coated thin film, and only the middle region would be tensioned. 57
Figure 3.4 Illustration of the MTS Tytron™ 250 Microforce Testing System. 58
Figure 4.1 Schematic illustrations of the multilayer samples. The overall coated multilayered thin films is all about 1 μm. 59
Figure 4.2 Representive EDS pattern of the as-deposited amorphous Zr46Cu54 thin film on the silcon nitride substrate. 60
Figure 4.3 XRD pattern of the amorphous ZrCu thin film on the PI substrate. 61
Figure 4.4 XRD pattern of the crystalline Cu thin film on the PI substrate. 61
Figure 4.5 XRD pattern of the ZrCu/Cu (100 nm/100 nm) multilayered thin film on PI substrate. 62
Figure 4.6 XRD pattern of the ZrCu/Cu (75 nm/75 nm) multilayered thin film on PI substrate. 62
Figure 4.7 XRD pattern of the ZrCu/Cu (50 nm/50 nm) multilayered thin film on PI substrate. 63
Figure 4.8 XRD pattern of the ZrCu/Cu (25 nm/25 nm) multilayered thin film on PI substrate. 63
Figure 4.9 XRD pattern of the ZrCu/Cu (10 nm/10 nm) multilayered thin film on PI substrate. 64
Figure 4.10 XRD pattern of the uncoated PI substrate. 64
Figure 4.11 The relationship between crystallite sizes of Cu and thickness. 65
Figure 4.12 Surface morphology of the undeformed ZrCu/Cu (100 nm/100 nm) multilayer sample at a low magnification of 50X. 66
Figure 4.13 Surface morphology of the undeformed ZrCu/Cu (100 nm/100 nm) multilayer sample at a low magnification of 3000X. 66
Figure 4.14 Surface morphology of the undeformed ZrCu/Cu (100 nm/100 nm) multilayer sample at a high magnification of 20000X. 67
Figure 4.15 Surface morphology of the undeformed ZrCu/Cu (100 nm/100 nm) multilayer sample at a high magnification of 50000X. 67
Figure 4.16 Surface morphology of the undeformed ZrCu/Cu (75 nm/75 nm) multilayer sample at a low magnification of 350X. 68
Figure 4.17 Surface morphology of the undeformed ZrCu/Cu (75 nm/75 nm) multilayer sample at a low magnification of 1000X. 68
Figure 4.18 Surface morphology of the undeformed ZrCu/Cu (75 nm/75 nm) multilayer sample at a high magnification of 5000X. 69
Figure 4.19 Surface morphology of the undeformed ZrCu/Cu (75 nm/75 nm) multilayer sample at a high magnification of 25000X. 69
Figure 4.20 Surface morphology of the undeformed ZrCu/Cu (75 nm/75 nm) multilayer sample at a high magnification of 50000X. 70
Figure 4.21 Surface morphology of the undeformed ZrCu/Cu (50 nm/50 nm) multilayer sample at a low magnification of 350X. 70
Figure 4.22 Surface morphology of the undeformed ZrCu/Cu (50 nm/50 nm) multilayer sample at a low magnification of 1500X. 71
Figure 4.23 Surface morphology of the undeformed ZrCu/Cu (50 nm/50 nm) multilayer sample at a high magnification of 5000X. 71
Figure 4.24 Surface morphology of the undeformed ZrCu/Cu (50 nm/50 nm) multilayer sample at a high magnification of 10000X. 72
Figure 4.25 Surface morphology of the undeformed ZrCu/Cu (50 nm/50 nm) multilayer sample at a high magnification of 25000X. 72
Figure 4.26 Surface morphology of the undeformed ZrCu/Cu (50 nm/50 nm) multilayer sample at a high magnification of 50000X. 73
Figure 4.27 Surface morphology of the undeformed ZrCu/Cu (25 nm/25 nm) multilayer sample at a low magnification of 350X. 73
Figure 4.28 Surface morphology of the undeformed ZrCu/Cu (25 nm/25 nm) multilayer sample at a low magnification of 1500X. 74
Figure 4.29 Surface morphology of the undeformed ZrCu/Cu (25 nm/25 nm) multilayer sample at a high magnification of 5000X. 74
Figure 4.30 Surface morphology of the undeformed ZrCu/Cu (25 nm/25 nm) multilayer sample at a high magnification of 25000X. 75
Figure 4.31 Surface morphology of the undeformed ZrCu/Cu (25 nm/25 nm) multilayer sample at a high magnification of 50000X. 75
Figure 4.32 Surface morphology of the undeformed ZrCu/Cu (10 nm/10 nm) multilayer sample at a low magnification of 350X. 76
Figure 4.33 Surface morphology of the undeformed ZrCu/Cu (10 nm/10 nm) multilayer sample at a low magnification of 1500X. 76
Figure 4.34 Surface morphology of the undeformed ZrCu/Cu (10 nm/10 nm) multilayer sample at a high magnification of 5000X. 77
Figure 4.35 Surface morphology of the undeformed ZrCu/Cu (10 nm/10 nm) multilayer sample at a high magnification of 25000X. 77
Figure 4.36 Surface morphology of the undeformed ZrCu/Cu (10 nm/10 nm) multilayer sample at a high magnification of 50000X. 78
Figure 4.37 Stress-stress curves of clean PI with no spacer, stuck with the spacers stuck by the tradition double-sided tape,. the 3MTM instant glue, and the 3MTM V1805 double-sided tape. 79
Figure 4.38 The tensile test results of the PI substrates in different rounds. 80
Figure 4.39 The 4-orderd fitted curve of averaged tensile test results of PI substrates 80
Figure 4.40 The schematic illustration of the extraction of TFMG tensile property by deducting the uncoated foil substrate from the coated foil. 81
Figure 4.41 The representative engineering stress-strain curve of the ZrCu thin film 1 μm in thickness. 82
Figure 4.42 The representative engineering stress-strain curve of the nanocrystalline Cu thin film 1 μm in thickness. 83
Figure 4.43 The representative engineering stress-strain curve to about 2% strain for the 1-μm-thick multilayered thin films of TFMG ZrCu and crystalline Cu layers with a thickness in 100 nm/100 nm. 84
Figure 4.44 The representative engineering stress-strain curve to about 2% strain for the 1-μm-thick multilayered thin films of TFMG ZrCu and crystalline Cu layers with a thickness in 75 nm/75 nm. 85
Figure 4.45 The representative engineering stress-strain curve to about 2% strain for the 1-μm-thick multilayered thin films of TFMG ZrCu and crystalline Cu layers with a thickness in 50 nm/50 nm. 86
Figure 4.46 The representative engineering stress-strain curve to about 2% strain for the 1-μm-thick multilayered thin films of TFMG ZrCu and crystalline Cu layers with a thickness in 25 nm/25 nm. 87
Figure 4.47 The representative engineering stress-strain curve to about 2% strain for the 1-μm-thick multilayered thin films of TFMG ZrCu and crystalline Cu layers with a thickness in 10 nm/10 nm. 88
Figure 4.48 The dependence of the tensile modulus as a function of layer thickness. 89
Figure 4.49 The dependence maximum stress of the tensile modulus as a function of layer thickness. 90
Figure 4.50 The Hall-Petch relation for multilayered ZrCu/Cu (100 nm/100 nm), (50 nm/50 nm), (25 nm/25 nm) and (10 nm/10 nm) multilayered samples. 91
Figure 4.51 The schematic illustration of deforming behavior of amorphous ZrCu layers and nanocrystalline Cu layers. 92
Figure 4.52 The dependence maximum stress of the tensile modulus as a function of layer thickness. 93
Figure 4.53 The dependence maximum stress of the tensile modulus as a function of layer thickness. 93
Figure 4.54 SEM surface morphology of the uncoated and tensile-loaded PI at a low magnification of 50X. 94
Figure 4.55 SEM surface morphology of the uncoated and tensile-loaded PI at a low magnification of 1000X. 94
Figure 4.56 SEM surface morphology of the 1-μm-thick deformed monolithic amorphous ZrCu sample at a low magnification of 350X. 95
Figure 4.57 SEM surface morphology of the 1-μm-thick deformed monolithic amorphous ZrCu sample at a low magnification of 1000X. 95
Figure 4.58 SEM surface morphology of the 1-μm-thick deformed monolithic Cu sample at a low magnification of 350X. 96
Figure 4.59 SEM surface morphology of the 1-μm-thick deformed monolithic Cu sample at a low magnification of 1000X. 96
Figure 4.60 SEM surface morphology of the deformed ZrCu/Cu (100 nm/100 nm) multilayer sample at a low magnification of 350X. 97
Figure 4.61 SEM surface morphology of the deformed ZrCu/Cu (100 nm/100 nm) multilayer sample at a low magnification of 1500X. 97
Figure 4.63 SEM surface morphology of the deformed ZrCu/Cu (100 nm/100 nm) multilayer sample at a low magnification of 15000X. 98
Figure 4.64 SEM surface morphology of the deformed ZrCu/Cu (50 nm/50 nm) multilayer sample at a low magnification of 350X. 99
Figure 4.65 SEM surface morphology of the deformed ZrCu/Cu (50 nm/50 nm) multilayer sample at a low magnification of 1000X. 99
Figure 4.66 SEM surface morphology of the deformed ZrCu/Cu (50 nm/50 nm) multilayer sample at a high magnification of 5000X. 100
Figure 4.67 SEM surface morphology of the deformed ZrCu/Cu (25 nm/25 nm) multilayer sample at a high magnification of 200X. 100
Figure 4.68 SEM surface morphology of the deformed ZrCu/Cu (25 nm/25 nm) multilayer sample at a high magnification of 350X. 101
Figure 4.69 SEM surface morphology of the deformed ZrCu/Cu (25 nm/25 nm) multilayer sample at a high magnification of 1500X. 101
Figure 4.70 SEM surface morphology of the deformed ZrCu/Cu (25 nm/25 nm) multilayer sample at a high magnification of 5000X. 102
Figure 4.71 SEM surface morphology of the deformed ZrCu/Cu (10 nm/10 nm) multilayer sample at a low magnification of 350X. 102
Figure 4.72 SEM surface morphology of the deformed ZrCu/Cu (10 nm/10 nm) multilayer sample at a low magnification of 950X. 103
Figure 4.73 SEM surface morphology of the deformed ZrCu/Cu (10 nm/10 nm) multilayer sample at a high magnification of 5000X. 103
Figure 4.74 The schematic illustration of average spacing between microcracks after 2% strain and more 10% of ZrCu/Cu (100 nm/100 nm), ZrCu/Cu (50 nm/50 nm), ZrCu/Cu (25 nm/25 nm) and ZrCu/Cu (10 nm/10 nm) 104
Figure 4.75 The schematic illustration of average crack density after 2% strain and more 10% of ZrCu/Cu (100 nm/100 nm), ZrCu/Cu (50 nm/50 nm), ZrCu/Cu (25 nm/25 nm) and ZrCu/Cu (10 nm/10 nm) 105
Figure 4.76 The schematic illustration of average crack density after 2% strain versus the average maximum stress of multilayered thin film. 106
參考文獻 References
[1] W. Klement, R. H. Willens and P. Duwez, Nature, 187, pp. 869-870 (1960).
[2] A.C. Lund and C. A. Schuh, J. Appl. Phys., 95, pp. 4815-4822 (2004).
[3] W. L. Johnson, MRS Bull. 24, pp. 42-56 (1999).
[4] A. Inoue. Acta Mater. 48, pp. 279-306 (2000).
[5] H. S. Chou, J. C. Huang, Y. H. Lai, L. W. Chang, X. H. Du, J. P. Chu and T. G. Nieh, J. Alloy Compd., 483, pp. 341-345 (2009).
[6] B. Golding, B. G. Bagley and F. S. L. Hsu, Phys. Rev. Lett., 29, pp. 68-70 (1972).
[7] S. K. Sharma, S. Hofmann, Appl. Surf. Sci., 51, pp. 139-155 (1991).
[8] A. Calka, A. P. Pogany,R. A. Shanks and H. Engelman, Mat. Sci. Eng. A., 128, pp. 107-112 (1990).
[9] X. H. Du, J. C. Huang, H. M. Chen, H. S. Chou, Y. H. Lai, K. C. Hsieh, J. S. C. Jang and P. K. Liaw, Intermetallics, 17, pp. 607-613 (2009).
[10] Y. Wang, J. Li, A. V. Hamza and T. W. Barbee, Proc. Natl. Acad. Sci. U. S. A., 104, pp. 11155–11160 (2007).
[11] D. W. Forester, C. Vittoria, D. C. Webb and K. L. Davis, J. Appl. Phys., 49, pp. 1794-1796 (1978).
[12] R. B. Schwarz and W. L. Johnson, Phys. Rev. Lett., 51, pp. 415-418 (1983).
[13] E. J. Cotts, W. J. Meng and W. L. Johnson., Phys. Rev. Lett., 57, pp. 2295-2298 (1986).
[14] Q. M. Chen, Y. D. Fan and H. D. Li., Mater. Lett., 6, pp. 311-315 (1988).
[15] G. Minnigerode, A. Regenbrecht and K. Samwer, Z. Phys. Chem. Neue Folge, Bd., 157, pp. 197-201 (1988).
[16] A. Regenbrecht, G. Minnigerode and K. Samwer, Z. Phys. B, 79, pp. 25-31 (1990).
[17] J. Dudonis, R. Brucas and A. Miniotas, Thin Solid Films, 275, pp. 164-167 (1996).
[18] S. Hata, K. Sato and A. Shimokohbe, Proc. SPIE, 3892, pp. 97-108 (1999).
[19] Y. Liu, S. Hata, K Wata and A. Shimokohbe, Jpn. J. Appl. Phys., 40, pp. 5382-5388 (2001).
[20] Y. Liu, S. Hata, K. Wada and A. Shimokohbe, Interlaken, Switzerland, MEMS 14th IEEE International Conference (2001).
[21] J. P. Chu, Y. W. Lai, T. N. Lin and S. F. Wang, Mat. Sci. Eng. A, 277, pp. 11-17 (2000).
[22] D. S. Grummon and J. Zhang, Phys. Stat. Sol. A, 186, pp. 17-39 (2001).
[23] P. Hashemi, J. Derakhshandeh, S. Mohajerzadeh, M. Robertson and A. Tonita, J. Vac. Sci. Technol. A, 22, pp. 966-970 (2004).
[24] T. G. Nieh and J. Wadsworth, Scripta Mater., 44, pp. 1825-1830 (2001).
[25] Y. Xiang, T. Li, Z. Suo and J. J. Vlassak, Appl. Phys. Lett., 87, 161910 (2005).
[26] R. M. Niu, G. Liu, C. Wang, G. Zhang, X. D. Ding and J. Sun, Appl. Phys. Lett., 90, 161907 (2007).
[27] S. R. Forrest, Nature, 428, pp. 911-918 (2004).
[28] A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju V. Kuck, H. Katz, K. Amundson, J. Ewing and P. Drzaic, Proc. Natl. Acad. Sci. U.S.A. 98, pp. 4835-4840 (2001).
[29] V. J. Lumelsky, M. S. Shur and S. Wagner, IEEE Sens. J., 1, pp. 41-51 (2001).
[30] Bonderover and S. Wagner, IEEE Electron Device Lett., 25, pp. 295-297 (2004).
[31] B. C. Bell and D. A. Glocker, J. Vac. Sci. Tech. A, 9, pp. 2437-2441 (1991).
[32] H. C. Choi and K. S. Kim, J. Mech. Phys. Solids, 40, pp. 75-103 (1992 ).
[33] Y. S. Kang and P. S. Ho, J. Electron. Mater., 26, pp. 805-813 (1997).
[34] F Macionczyk, W Brűckner, W Pitschte and Reiss, J. Mater. Res., 13, pp. 2852-2858 (1998).
[35] H. Gleskova, S. Wagner and Z. Suo, Appl. Phys. Lett., 75, pp. 3011-3013, (1999).
[36] O. Kraft, R. Schwaiger and P. Wellner, Mater. Sci. Eng. A., 319, pp. 919-923 (2001).
[37] K. F. Badawi, P Villain, P Goudeau and P. O. Renault, Appl. Phys. Lett., 80, pp. 4705-4707 (2002).
[38] D. Y. W. Yu and F. Spaepen, J. Appl. Phys., 95, pp. 2991-2997 (2004).
[39] J. Das, M. B. Tang, K.B. Kim, R. Theissmann, F. Baier, W. H. Wang and J. Eckert, Phys. Rev. Lett., 94, 205501 (2005).
[40] Y. H. Liu, G. Wang, R. J. Wang, D. Q. Zhao, M. X. Pan and W. H. Wang, Science, 315, pp. 1385-1388 (2007).
[41] J. C. Lee, Y. C. Kim, J. P. Ahn and H.S. Kim, Acta Mater., 53, pp. 129-139 (2005).
[42] K. Oka, N. Yano, S. Furukawa, I. Ogasawara, J. Yamasaki and F. B. Humphrey, IEEE Trans. Mag., 31, pp. 3997-3999 (1995).
[43] J. Sakurai, S. Hata, and A. Shimokohbe, International Conference on Advanced Technology in Experimental Mechanics 2003, pp. 10-12 (2003).
[44] Y. Liu, S. Hata, K Wada and A. Shimokohbe, Jpn. J. Appl. Phys., 40, pp. 5382-5388 (2001).
[45] S. J. Poon, Adv. Phys., 41, pp. 303-363 (1992).
[46] S. R. Nagel, Phys. Rev. Lett., 41, pp. 990-993 (1978).
[47] J. P. Chu, C. T. Lo, Y. K. Fang and B. S. Han, Appl. Phys. Lett., 88, pp. 1-3 (2006).
[48] O. J. Kwon, Y. C. Kim, K. B. Kim, Y. K. Lee and E. Fleury, Met. Mater. Int., 12, pp. 207-212 (2006).
[49] A. J. Kerns, D. E. Polk, R. Ray and B. C. Giessen, Mat. Sci. Eng. A., 38, pp. 49-53 (1979).
[50] K. H. J. Buschow, J. Appl. Phys. 52, pp. 3319-3323 (1981).
[51] Z. Altounian, G. H. Tu and J. O. Strom-Olsen, J. Appl. Phys. 53, pp. 4755-4760 (1982).
[52] E. Kneller, Y. Khan and U. Gorres, Z. Metallkd. 77, pp. 152-163 (1986).
[53] I. Karaman, J. Robertson, J. T. Im, S. N. Mathaudhu, Z. P. Luo and K. T. Hartwig, Metall. Mater. Trans. A, 35A, pp. 247-256 (2004).
[54] F. Spaepen, Acta Matall. 25, pp. 407-415 (1977).
[55] A. S. Argon, Acta Matall. 27, pp. 47-58 (1979).
[56] L. H. Dai, M. Yan, L. F. Liu and Y. L. Bai, Appl. Phys. Lett. 87, 141916 (2005).
[57] S. Iwamori, T. Miyashita, S. Fukuda, S. Nozaki, K. Sudoh and N. Fukuda, Vacuum, 51, pp. 615-618 (1998).
[58] 林金雀, 化工資訊, pp. 29-34 (1998).
[59] T. Strunskus, M. Grunze, G. Kochendoerfer and C. Woll, Langmuir, 12, pp. 2712-2725 (1996).
[60] D. A. Hardwick, Thin Solid Films, 154, pp. 109-124 (1987).
[61] M. D. Merz and S. D. Dahlgren, J. Appl. Phys., 46, pp. 3235-3237 (1975).
[62] R. W. Springer and D. S. Catlett, Thin Solid Films, 54, pp. 197-205 (1978).
[63] C. A. Neugebauer, J. Appl. Phys., 31, pp. 1096-1101 (1960).
[64] D. Kuhlmann-Wilsdorf and K. S. Raghavan, Rev. Sci. Instrum., 33, pp. 930-933 (1962).
[65] J. M. Blakely, J. Appl. Phys., 35, pp. 1756-1759 (1964).
[66] A. Lawley and S. Schuster, Sci. Insfrum. Res., 3, pp. 1178-1180 (1962).
[67] C. G. Andeen, C. W. Hagerling and R. W. Hoffman, Proc. 7th. Int. Vacuum Congr. and 3rd Int. Conf. on Solid Surf., Vienna, Austria, pp. 1769-1772 (1977).
[68] I. C. Lin, Master Thesis, pp. 67-68 (2010).
[69] M. Raible, S. J. Linz and P. Hänggi, Phys. Rev. E, 64, 031506 (2001).
[70] F. Macionczyk and W. Brűckner, J. Appl. Phys., 86, pp. 4922-4929 (1999).
[71] M. C. Liu, J. C. Huang, H. S. Chou, Y. H. Lai and T. G. Nieh, Scripta Materialia, 61, pp. 840-843 (2009).
[72] M. C. Liu, C. J. Lee, Y. H. Lai and J. C. Huang, Thin Solid Films , 518, pp. 7295-7299 (2010).
[73] G. W. Nieman, J.R. Weertman, and R. W. Siegel, J. Mat. Res, 6, pp. 1012-1027 (1991).
[74] H. D. Espinosa, B.C. Prorok, and B. Peng, J. Mech. Phys., 52, pp. 667-689 (2004).
[75] P. M. Anderson, C. Li, Nanostructered Mater., 5, pp. 349-362 (1995).
[76] J. Y. Zhang, X. Zhang, G. Liu, G.J. Zhang and J. Sun, Scripta Mater., 63, pp. 101–104 (2010).
[77] X. F. Zhu, G.P. Zhang, C. Yan, S.J. Zhu and J. Sun, Philos. Mag. Lett., 90, pp. 413–421 (2010).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code