Responsive image
博碩士論文 etd-0905111-113935 詳細資訊
Title page for etd-0905111-113935
論文名稱
Title
台灣海岸防護與規劃系統的建置
Establishing a Coastal Protection and Planning System in Taiwan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
184
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-28
繳交日期
Date of Submission
2011-09-05
關鍵字
Keywords
靜態平衡岬灣、波流場計算、人工養灘、海岸防護、海岸規劃平台、SMC系統
wave-current simulation, SMC, Shore protection, Coastal planning platform, Beach nourishment, Headland-bay beach in static equilibrium
統計
Statistics
本論文已被瀏覽 5788 次,被下載 2079
The thesis/dissertation has been browsed 5788 times, has been downloaded 2079 times.
中文摘要
近數十年來,歐美海岸先進國家的學界及研究機構積極研發海岸水動力數值模式,推廣成效良好的數值模擬有丹麥的MIKE 21套裝軟體、美國的CEDAS系統(含GENESIS及SBEACH)及西班牙的海岸模擬系統SMC等,皆以輔助海岸工程的研究規劃與設計實務為目的。其中西班牙的SMC是唯一的整合型海岸規劃模擬系統,由系統中預儲的海域地形及海氣象資料,可直接在螢幕上進行養灘與岬灣、防波堤擴建延伸及航道濬深等規劃與設計,以及防災減災措施的模擬。目前我國海岸工程學界雖有自行研發的波潮流計算程式與海岸變遷模式,經濟部水利署亦已陸續嘗試建立全國海岸波浪與潮汐資料庫,惟尚有建立全國性通用的海域地形-波潮流-海岸防護整合型規劃模擬平台的必要。
本論文首先說明台灣海岸環境概況及海岸變遷主要原因,回顧台灣自民國60年以降的海岸防護沿革及現階段水利署的海岸環境營造計畫願景與維持自然海岸線比例不再降低的目標-尤其是以人工養灘配合岬灣提昇自然海岸線比例及建立全國適用的海岸規劃模擬平台。為因應海岸防災減災、海灘復育及創造親水遊憩灣岸,本研究建議以師法大自然的靜態平衡岬灣,由其經驗式配合西班牙SMC系統,可在螢幕上規劃岬灣,做為近自然工法的最佳代表。
本研究由引進西班牙全國通用的SMC系統的架構,將所蒐集的台灣海域海圖、近岸實測水深及長期觀測的ICOADS等資料,完成了預儲台灣兩個海岸的海域地形與波浪基本資料,邁向建立台灣海岸規劃數值模擬平台的第一個大步。同時以台灣版的SMC海岸規劃模擬平台之成果,應用於屏東大鵬灣及高雄西子灣,做為示範案例,進行設計方案所需一系列的季風與颱風波浪的波流場計算及養灘搭配岬灣工法的規劃設計。透過本研究SMC的模擬結果,可協助規劃者或決策者深入瞭解海岸整體狀況,進而研擬更適切之防護對策,以促成我國海岸近自然工法的早日達成。最後,期許將來以研究成果協助政府水利單位落實「海岸環境營造計畫(98~103年度)」中揭示建立適用海岸規劃平台的策略,推廣海岸防護規劃設計系統化,以達成我國海岸環境永續發展的願景。
Abstract
In the last few decades, academic and institutions advanced in coastal research in Europe and America have rigorously engaged in developing numerical models for coastal wave hydrodynamic simulations. The notable products include MIKE21 from DHI in Denmark, CEDAS (with GENESIS and SBEACH) from Veri-Tech in the United States, and the SMC from University of Cantabria in Spain. Among them, the Spanish Coastal Modeling System (SMC) is the only integrated package for coastal planning and modeling. With a unique preprocess module which pre-stores the bathymetry and wave data, the SMC provides a user-friendly interface directly using the screen display for a series of coastal planning and design applications which comprise artificial nourishment with headland-bay beach, breakwater construction and extension, and dredging of navigation channel etc., as well as the usual wave-current simulation for countermeasures in coastal protection and disaster mitigation. Despite the availability of several numerical programs for wave-current simulations and beach changes that have been developed by the coastal professional in Taiwan, and the continuous effort of the Water Resources Agency, Ministry of Economic Affairs to establish a national coastal database, it is imperative to develop/setup an integrated bathymetry-hydrodynamics-protection system, such as the Spanish SMC, as the key element in the national platform for coastal planning and modeling.
This dissertation first describes the coastal environment in Taiwan, major causes for shoreline evolution and then reviews the history of shore protection since 1970s, together with the current prospective for coastal environment and strategies to sustain the natural shoreline ratio. To accomplish these goals, the Water Resources Agency has endeavored to implement artificial nourishment with headland-bay beaches, in order to raise the ratio of natural shoreline, in addition to establish a national coastal planning and simulation platform. As a response to this call for eco-engineering approach, we recommend that headland-bay beach in static equilibrium be adopted for mitigating coastal erosion, beach restoration and creation of recreational beaches, which can be designed directly on the screen using the empirical bay shape equation in conjunction with the SMC.
Based on the framework of the Spanish SMC, this writer has successfully attempted the preliminary pre-process module of Baco (bathymetry) and Odin (wave climate) for Taiwan, using data from digitized nautical charts, nearshore depth surveys, and long-term wave observation results around Taiwan from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS). The effort generates the first version of SMC in Taiwan. Having pre-stored the bathymetry and wave data for Dapeng bay in Pingtung County and Sizihwan Bay in Kaohsiung City, a series of coastal planning and modeling procedures for these two model sites are demonstrated in this dissertation, including a series of calculations of wave-current distribution for monsoon and storm waves, as well as planning of bay beach using artificial nourishment.
Upon executing the Taiwanese version of SMC introduced in this dissertation, the modeling results can be applied to assist the planners and decision makers in comprehending the coastal environment, devising a feasible shore protection strategy, and promoting an earlier accomplishment of the so-called 「geo-engineering 「 in our country. Finally, the writer also wishes the outcome of this study could help relevant government agency to accomplish the prospective of sustainable coastal development upon implementing the strategies of establishing an appropriate coastal planning platform and promoting a systematic approach for coastal planning and design, as revealed in the "Sustainable Regeneration of Coastal Environment Project (98 ~ 103 fiscal year)".
目次 Table of Contents
中文摘要 ...................................................................................................................... i
Abstract ........................................................................................................................ ii
目錄 ........................................................................................................................... iv
圖目錄 ....................................................................................................................... vii
表目錄 ...................................................................................................................... xiii
符號說明 .................................................................................................................. xiv
第一章 緒論 ....................................................................................................... 1
1.1 台灣海岸環境 ............................................................................................... 1
1.1.1 台灣海岸環境概況 .............................................................................. 1
1.1.2 影響海岸變遷的主要因素 .................................................................. 3
1.2 台灣海岸防護 ............................................................................................... 4
1.2.1 台灣海岸防護沿革 .............................................................................. 4
1.2.2 現階段台灣海岸防護策略 .................................................................. 5
1.3 研究目的與論文架構 ................................................................................... 6
1.3.1 研究目的 ............................................................................................. 6
1.3.2 論文架構 ............................................................................................. 7
第二章 海岸變遷模式與GIS 應用 .................................................................... 9
2.1 長期海岸變遷數值模式 ............................................................................... 9
2.1.1 模式之發展 .......................................................................................... 9
2.1.2 單線模式 ............................................................................................ 11
2.2 短期海灘剖面變遷模式 ............................................................................. 11
2.2.1 SBEACH 模式 ...................................................................................... 11
2.2.2 MIKE21 ................................................................................................ 14
2.3 台灣海岸資訊整合防災系統 ...................................................................... 15
2.3.1 海岸地理資訊系統 ............................................................................ 15
2.3.2 以GIS 建構「數位海洋」 ................................................................. 17
第三章 靜態平衡岬灣的工程應用 .................................................................. 19
3.1 岬灣地貌的工程觀 ..................................................................................... 19
3.1.1 岬灣的類型 ....................................................................................... 19
3.1.2 靜態平衡岬灣經驗式 ....................................................................... 21
3.1.3 MEPBAY 應用軟體 .......................................................................... 22
3.2 靜態平衡岬灣觀念的應用 ......................................................................... 24
3.2.1 驗證岬灣安定性 ............................................................................... 24
3.2.2 預測防波堤下游海岸在上游「零漂沙」輸入的灣線 .................... 27
3.2.3 海岸防護與改善既有防護設施 ........................................................ 30
3.2.4 創造親水遊憩灣岸 ............................................................................ 32
第四章 西班牙SMC 海岸模擬系統 .................................................................. 34
4.1 前言 ........................................................................................................... 34
4.2 軟體下載與安裝 ....................................................................................... 39
4.3 預儲資料Sigma ........................................................................................ 40
4.3.1 水深預儲模組Baco ........................................................................... 40
4.3.2 海氣象波浪模組Odin ....................................................................... 42
4.3.3 海岸溢淹模組Atlas ........................................................................... 46
4.4 短期海岸變遷分析 ................................................................................... 48
4.4.1 波浪傳輸模組Oluca .......................................................................... 49
4.4.2 近岸流場模組Copla .......................................................................... 51
4.4.3 漂沙傳輸模組Eros ............................................................................ 53
4.4.5 海灘剖面地形變遷模組Petra .......................................................... 55
4.5 長期平衡海岸分析 ................................................................................... 56
4.6 工程現場應用MMT ................................................................................. 58
第五章 台灣海岸規劃模擬系統之建立 ............................................................ 66
5.1 水深地形資料之建立 ................................................................................. 66
5.1.1 水深地形資料蒐集 ........................................................................... 66
5.1.2 地形資料建置 ................................................................................... 67
5.1.3 Baco 模組展示 ................................................................................ 73
5.2 海象資料之建立 ......................................................................................... 75
5.2.1 波浪資料來源 .................................................................................... 79
5.2.1.1 海象觀測資料ICOADS........................................................... 79
5.2.1.2 海洋衛星資料(Topex/Poseidon) ...................................... 82
5.2.2 兩波交會計算方法 ........................................................................... 83
5.2.3 波浪資料率定分析 ........................................................................... 84
5.2.4 Odin 預儲模組之建立 ....................................................................... 91
5.2.4.1 鵝鑾鼻海象資料 .................................................................... 95
5.2.4.2 蘇澳海象資料 ...................................................................... 100
5.2.4.3 大鵬灣海象資料 .................................................................. 105
第六章 以SMC 規劃岬灣之示範案例 ............................................................. 110
6.1 屏東大鵬灣海灘規劃 .............................................................................. 110
6.1.1 方案研擬與構想 ............................................................................. 110
6.1.2 SMC 數值模擬 ................................................................................. 114
6.1.2.1 現況波流場模擬結果 .......................................................... 120
6.1.2.2 方案三模擬結果 .................................................................. 124
6.2 高雄西子灣海灘復育 .............................................................................. 127
6.2.1 方案研擬 ........................................................................................ 128
6.2.2 SMC 模擬專案之建立 ..................................................................... 129
6.2.2.1 現況 ...................................................................................... 129
6.2.2.2 方案二 .................................................................................. 130
6.2.3 SMC 數值模擬 ................................................................................. 136
6.2.3.1 現況波流場模擬結果 .......................................................... 141
6.2.3.2 方案二模擬結果 .................................................................. 146
第七章 結論與建議 ......................................................................................... 153
7.1 結論 .......................................................................................................... 153
7.2 建議 .......................................................................................................... 154
參考文獻 .......................................................................................................... 155
著作 ................................................................................................................ 165
參考文獻 References
中華顧問工程司(2004)。「南、北濱及化仁海岸環境及景觀整體改善規劃」。經濟部水利署第九河川局,中華民國92年11月。
中華顧問工程司(2004)。「海岸環境營造計畫-白沙灣海岸保護工程委託測量規劃設計」。經濟部水利署第十河川局,中華民國93年9月。
中華顧問工程司(2004)。「彌陀鄰近海岸環境及景觀整體改善研究規劃」期末報告。經濟部水利署第六河川局,中華民國93年10月。
中華顧問工程司(2005)。「高雄西子灣海岸計畫整體規劃」暨「高雄西子灣海岸計畫第一階段景觀改善示範工程委託設計」規劃總報告書。高雄市政府工務局委託,中華民國94年12月。
中華顧問工程司(2006)。「大鵬灣青洲遊憩區海岸遊憩及景觀改善整體規劃研究」期末報告書。交通部觀光局大鵬灣國家風景區管理處委託,中華民國95年8月。
余孟娟、陳聖學、許榮中(2004)。靜態平衡岬灣經驗式精確度之再檢驗。第26屆海洋工程研討會論文集,pp. 617-622.
余孟娟、黃雅玲、陳聖學、許榮中(2005)。GENESIS模式靈敏度分析。第27屆台灣海洋工程研討會論文集,pp. 849-856.
余孟娟、許榮中、朱志誠、陳建中、謝謂君、郭進慶(2006)。西班牙全國通用海岸模擬系統SMC在台灣的應用。第28屆台灣海洋工程研討會論文集,pp. 557-562。
余孟娟、許榮中、李芳君、朱志誠、陳建中(2007)。台灣海域波浪資料統計分析研究,第29屆台灣海洋工程研討會論文集,pp.123-128。
林文華(2009)。暴潮巨浪作用下海岸緩衝帶寬度的研擬。國立中山大學海洋環境及工程學系碩士論文,102頁。
林哲緯(2006)。SMC模式於台灣海域之應用。國立成功大學水利及海洋工程學系碩士論文,69頁。
黃明哲、薛憲文(2008)。海洋地理資訊系統應用與數位海洋的規劃與發展。國土資訊系統通訊,第67期,2-15頁。
郭金棟(1990)。台灣海岸地形變化及其未來之開發利用。行政院科技顧問組委託研究報告,國立成功大學水利及海洋工程研究所出版,219頁。
郭金棟(1997)。台灣海岸災害防治之展望。第十九屆海洋工程研討會專題演講,共8頁。
郭金棟(2001)。台灣海岸防護現況。經濟部水利處「海防護策略研討會-引言輯」,1-1 ~1-20頁。
郭金棟(2004)。「海岸保護」。台北:科技圖書, 439頁。
郭金棟(2007)。「當前台灣海岸防護問題」。經濟部水利署水利規劃試驗所「海岸環境營造計畫總檢討及改善策略研究(1/2)」,第一次專家座談會專題演講,共14頁。
許泰文 (2001)。「建立波潮流與海岸變遷模式」,經濟部水資源局。
許榮中 (2003)。 海岸新工法-人工岬灣與養灘綜合工法。 海下技術季刊,第十三卷第二期,35-48頁。
曾以帆、許榮中(2005)。海岸開發對鄰近海岸的影響。「防災及生態工法專輯」-海洋及水下科技季刊,第十五卷第三期,33-41頁。
經濟部水利處(2001a)。「台灣地區既有海堤功能檢討」。民國九十年一月,共173頁。
經濟部水利處(2001b)。「海岸防護策略研討會-引言輯」。民國九十年六月。
經濟部水利處(2001c)。「海岸防護策略研討會-實錄」。民國九十年十一月,共75頁。
經濟部水利署。(2002)。「台灣海岸防護對策研究」。國立中山大學海洋科技研究中心執行,民國九十一年九月,共224頁加附錄。
經濟部水利署(2003)「海岸環境營造計畫附件ㄧ:台灣地區海岸防護工作檢討報告」。
經濟部水利署(2004)。「水與綠—生態治河親水建設:海岸環境營造計畫﹙93∼97年度﹚核定本」。民國93年元月。
經濟部水利署水利規劃試驗所(2007)。「海堤環境營計畫總檢討及改善策略研究﹙1/2﹚」-總評估報告。民國96年4月。
經濟部水利署水利規劃試驗所(2006~2008)。「海岸環境營造計畫總檢討及改善策略研究(1/2)(2/2) 」。國立中山大學執行。
經濟部(2008)。「海岸環境營造計畫﹙98~103年度﹚」初稿。民國97年元月。
經濟部(2008)。「海岸環境營造計畫﹙93~97年度﹚」總評估報告。民國97年3月。
蔡清標(2000)。「子計畫二:海岸親水性空間與防治侵蝕之柔性工法研擬及溫室效應對海岸溢淹影響之評估(二)」。經濟部水資源局計畫,期中報告。
簡仲和(2001)。近自然工法應用於海岸防護之芻議。經濟部水利處「海防護策略研討會-引言輯」,頁4-1~ 4-16。
簡連貴、林勇均、馮宗盛(2006)。東北角海岸防災地理資訊系統之建置與應用。第28屆海洋工程研討會論文集,877-882頁。
簡連貴、馮宗盛、顏厥正、徐月娟、周賢德(2008)。台灣近岸海域GIS資訊服務系統之建置與應用。第十屆水下技術研討會暨國科會成果發表會,pp.。
蕭茂鎮(2000)。台灣海岸防護工作的現況與未來。海洋環境專題討論演講,國立中山大學海洋環境及工程學系;17頁。
Bailard, J.A., (1981). An energetics total load sediment transport model for a plane sloping beach. J. Geophysical Research, 86(C11): 10938-10954.
Bakker, W.T., (1968). The dynamics of a coast with a groin system. Proc. 11th Inter. Conf. Coastal Eng., ASCE, pp. 492-517.
Barratt, M. J., (1991). Waves in the north east Atlantic, UK Dep. of Energy Rep. OTI 90 545, Her Majesty's Stationary Off., London.
Berkhoff, J.C.W., (1972). Computation of combined refraction-diffraction. Proc. 13th Inter. Conf. Coastal Eng., ASCE, v. 1, pp. 471-490.
Booij, N., (1981). Gravity waves on water with non-uniform depth and current. Report No. 81-1, Dept. of Civil Eng., Delft University of Technology, Delft, The Netherlands. 131 pp.
Cavaleri, L. and M. Sclavo, (2006). The calibration of wind and wave model data in the Mediterranean Sea. Coastal Engineering, 53, 613–627.
CERC, (1984). Shore Protection Manual, Volumes I and II. Coastal Engineering Research Center, US Army Corps of Engineers, Department of the Army, Washington, DC.
Council of Europe, (1999). European Code of Conduct for the Coastal Zones. Resolution document, CO-DBP(99)11, Committee for the Activities of the Council of Europe in the Field of Biological and Landscape Diversity, 19 April, 1999, 98pp.
Dean, R.G., (1977). Equilibrium beach profile, U.S. Atlantic and Gulf Coasts. Tech. Report 12, University of Delaware, Newark.
Dean, R.G., (1991). Equilibrium beach profiles: characteristics and applications. J. Coastal Research, 7(1): 53-84.
Dean, R.G. and R.A. Dalrymple, (2002). Coastal Processes: with engineering applications. Cambridge: Cambridge University Press, 475pp.
Fu, L.L., E.J. Christensen, C.A. Yamarone, M. Lefebvre, Y. Menard, and P. Escudier, (1994). TOPEX–POSEIDON mission overview. J. Geophys., Res. 99 (C12), 24369–24381.
GIOC, (2002a). Reference Document, Vol. I: Coastal Hydrodynamics. State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 512pp. (In Spanish).
GIOC, (2002b). Reference Document, Vol. II: Coastal Littoral Processes. State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 397pp. (In Spanish).
GIOC, (2002c). Reference Document, Vol. III: Coastal Protection Structures. State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 290pp. (In Spanish).
GIOC, (2002d). Reference Document, Vol. IV: Environmental Engineering Impact for Coastal Actions. State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 164pp. (In Spanish).
GIOC, (2002e). Methodological Document, Littoral Flooding Atlas for the Spanish Coast. State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 160pp. (In Spanish).
GIOC, (2002f). Coastal Modelling System (SMC)- Reference and User Manual. State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 82pp. (In Spanish).
GIOC, (2002g). Methodological Document, Beach Regeneration Manual. State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 201pp. (In Spanish).
GIOC, (2002h). Spectral Wave Propagation Model (Oluca-SP). State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 170pp. (In Spanish).
GIOC, (2002i). Wave Induce Currents Model in the surf zone (Copla-SP). State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 61pp. (In Spanish).
GIOC, (2002j). 2DH-Morphodynamic Evolution Model for Near Shore Areas (MOPLA). State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 262pp. (In Spanish).
GIOC, (2002k). Erosion and Sedimentation Evolution Model (Eros). State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 55pp. (In Spanish).
GIOC, (2002L). 2DV-Process-based Cross-shore Evolution Model. State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 80pp. (In Spanish).
GIOC, (2002m). Coastal Engineering Tutorial (TIC). State Coastal Office-Spanish Environmental Ministry and University of Cantabria, 182pp. (In Spanish).
Gonzalez, M. and R. Medina, (1999). Equilibrium shoreline response behind a single offshore breakwater. Proc. Coastal Sediments'99, ASCE, v. 1, pp. 933-942.
Gonzalez, M. and R. Medina, (2001). On the application of static equilibrium bay formations to natural and man-made beaches. Coastal Engineering, 43 (3-4): 209-225.
Gonzalez, M. and R. Medina, (2001). A new methodology for the design of static equilibrium beaches and its application in nourishment projects. Proc. 29th Inter. Conf. Coastal Eng., ASCE, v. 1, pp. 844-859.
Gonzalez, M. and R. Medina, (2002). A new methodology for the design of static equilibrium beaches and its application in nourishment projected. Proc. 29th Inter. Conf. Coastal Eng., ASCE, v. 1, pp. 844-859.
Gonzalez, M., R. Medina, and M.A. Losada, (2010). On the design of beach nourishment projects using static equilibrium concepts: application to Spanish coast. Coastal Engineering, Special Issue, 57(2): 227-240.
Gonzalez, M., R. Medina, J. Gonzalez-Ondina, A. Osorio,F.J. Mendez, and E. Garcia, (2007). An integrated coastal modelling system for analyzing beach processes and beach restoration projects, SMC. Computers & Geosciences, 33 (7): 916-931.
Gulev, S. K. and L. Hasse, (1998). North Atlantic wind waves and wind stress fields from voluntary observing data. J. Phys. Oceanography, 28: 1107–1130.
Gulev, S. K., V. Grigorieva, A. Sterl, and D. Woolf, (2003). Assessment of the reliability of wave observations from voluntary observing ships: Insights from the validation of a global wind wave climatology based on voluntary observing ship data. J. Geophys., 108 (C7): 3236, doi:10.1029/2002JC001437.
Hanson, H. and N.C. Kraus, (1989). GENESIS : Generalized model for simulating shoreline change, Report 1, Technical Reference. Tech. Report CERC-89-19, Coastal Engineering Research Center, U.S. Army Corps of Engineers, Vicksburg, MS.
Ho, S.K., (1971). Crenulate shape bays. Master thesis, No. 346, Asian Institute of Technology, Bangkok, Thailand.
Hogben, N., and F. E. Lumb, (1967). Ocean Wave Statistics. Ministry of Technology, Her Majesty's Stationary Office, London. 263 pp.
Hogben, N., N. M. C. Dacunha, and G. F. Oliver, (1986). Global Wave Statistics, Unwin Brothers, London. 661pp.
Hsu, J.R.C. and C. Evans, (1989). Parabolic bay shapes and applications. Proceedings, Institution of Civil Engineers, Part 2, London: Thomas Telford, 87: 557-570.
Hsu, J.R.C., T. Uda, and R. Silvester, (2000). Shoreline protection methods-Japanese experience. Chapter 9 in, Handbook of Coastal Engineering (ed., J.B. Herbich), New York: McGraw Hill, pp. 9.1-9.77.
Hsu, J.R.C., J.C. Chu, S.R. Liaw, and C.Y. Lee, (2006). Methodology of shore protection in Taiwan at the crossroads. Proc. 30th Inter. Conf. on Coastal Eng., ASCE, v. 4, pp. 3762-3774.
Hsu, J.R.C., L. Benedet, A.H.F. Klein, A.L. Raabe, C.P. Tsai, and T.W. Hsu, (2008). Appreciation of static bay beach concept for coastal management and protection. J. Coastal Research, 24(1): 198-215.
Hsu, J.R-C., M.M-J. Yu, F-C. Lee, and R. Silvester, (2009). Headland-bay beaches for recreation and shore protection. Chapter 29 in Handbook of Coastal and Ocean Eng., (ed., Y.C. Kim), World Scientific, Singapore, pp. 825-842.
Hsu, J.R.C., M.J. Yu, F.C. Lee, and L. Benedet, (2010). Static bay beach concept for scientists and engineers: a review. In (Guest-editor: J.R.C. Hsu and A.H.F. Klein), Applications of Headland-Bay Beaches, Special Issue, Coastal Eng., 57(2): 76-91. doi 10.1016/j.coastaleng.2009.09.00
Hsu, T.-W., T.-Y. Lin, and I.-F. Tseng, (2007). Human impact on coastal erosion in Taiwan. J. Coastal Research, 23 (4): 865-877.
Kamphuis, J.W., (1991). Alongshore sediment transport rate. J. Waterway, Port, Coastal and Ocean Eng. Div., ASCE, 117(6): 624-640.
Khoa, V.A., (1995). Experimentation on bayed beaches between headlands for small wave angle. Master Eng. thesis, Asian Institute of Technology, Bangkok, Thailand, 90pp.
Kirby, J.T., (1983). Propagation of weakly-nonlinear surface water waves in regions with varying depth and current. ONR Tech. Rept. 14, Res. Rept. CE-83-37, Department of Civil Engineering, University of Delaware, Newark.
Kirby, J.T., (1986a). Higher-order approximations in the parabolic equation method for water waves. J. Geophysical Research, 91 (C1): 933-952.
Kirby, J.T., (1986b). Open boundary condition in parabolic equation method. Journal of Waterway, Port, Coastal and Ocean Eng., ASCE, 12 (3): 460-465.
Kirby, J.T. and R.A. Dalrymple, (1983b). The propagation of weakly nonlinear waves in the presence of varying depth and currents. Proc. XXth Congress, IAHR, Moscow.
Kirby, J.T. and R.A. Dalrymple, (1985). Modifications to a propagation model for the combined refraction-diffraction of Stokes waves; shallow water, large angle and breaking wave effects. Report UFL/COEL-85/001, Coastal and Oceanographical Engineering Department, University of Florida, Gainesville.
Klein, A.H.F., A. Vargas, A.L.A. Raabe, and J.R.C. Hsu, (2003). Visual assessment of bayed beach stability using computer software. Computers & Geosciences, 29: 1249-1257.
Komar, P.D. and D.L. Inman, (1970). Longshore sediment transport on beaches. J. Geophysical Research, 73(30): 5914-5927.
Krumbein, W.C., (1944). Shore processes and beach characteristics. Technical Memorandum No. 3, Beach Erosion Board, U.S. Army Corps of Engineers, 47 pp.
Larson, M. and N.C. Kraus, (1989). SBEACH: Numerical Model for Simulating Storm-Induced Beach Change, Report 1, Empirical foundation and model development. Tech. Report ERC-89-9, Eng. Research Center, U.S. Army Corps of Engineers, Vicksburg, MS.
Le Mehaute, B. and M. Soldate, (1978). Mathematical modeling of shoreline evolution. Proc. 16th Inter. Conf. Coastal Eng., ASCE, v. 2, pp. 1163-1179.
Longuet-Higgins, M.S., R.W. Steward, (1964). Radiation stress in water waves – A physical discussion with applications. Deep-Sea Research, 11: 529-562.
Masselink, G. and A.D. Short, (1993). The effect of tide range on beach morphodynamics and morphology: a conceptual model. J. Coast. Research, 9 (3): 785– 800.
Medina, R., A.M. Bernabeu, C. Vidal, and M. Gonzalez, (2000). Relationship between beach morphodynamics and equilibrium profiles. Prof. 27th Inter. Conf. Coastal Eng., ASCE, v.3, pp. 2589-2601.
Moreno, L.J. and N.C. Kraus, (1999). Equilibrium shape of headland-bay beaches for engineering design. Proc. Coastal Sediments 』99, ASCE, v. 1, pp. 860-875.
MOPU, (1988). Coastal Actions. Department of Port and Coasts (MOPU), Spain. 143pp. (In Spanish)
Ozasa, H. and H. Brampton, (1980). Mathematical modeling of beaches backed by seawall. Coastal Eng., 4 (1): 47-64.
Pelnard-Considere, R., (1956). Essai de theorie de l'evolution des forms de visvage en plages de sable et de galets. IVeme Journees de l'Hydraulique, Les Energies de la Mer, Question III, Rapport, No. 1, 289-298.
Perlin, M. and R.G. Dean, (1983). A numerical model to simulate sediment transport in the vicinity of coastal structures. U.S. Army Corp of Engineers, CERC, Miscel. Report, No. 83-10.
Price, W.A., D.W. Tomlinson, and D.H. Willis, (1972). Predicting changes in plan shape of beaches. Proc. 13th Inter. Conf. Coastal Eng., ASCE, v. 2, pp.1321-1329.
Radder, A.C., (1979). On the parabolic equation method for water waves propagation. J. Fluid Mech., 95 (1): 159-176.
Roelvink, J.A. and M.J.F. Stive, (1989). Bar-generating cross-shore flow mechanisms on a beach. J. Geophysical Research, 94(C4): 4785-4800.
Rosati, H.D., R.A. Wise, N.C. Kraus, and M. Larson, (1993). SBEACH: Numerical Model for Simulating Storm-Induced Beach Change, Report 3, User's Manual. Coastal Eng. Research Center, U.S. Army Corps of Engineers, Vicksburg, MS., I.R. CERC-93-2.
Szmytkiewicz, M., J. Biegowski, L.M. Kaczmarek, T. Okroj, R. Ostrowski, Z. Pruszak, G. Rozyńsky, and M. Skaja, (2000). Coastline changes nearby harbour structures: comparative analysis of one-line models versus field data. Coastal Engineering, 40: 119-139.
Short, A.D. and G. Masselink, (1999). Embayed and structurally controlled beaches. In Handbook of Beach and Shoreface Morphodynamics, (ed., A.D. Short), Chichester: Wiley. p. 230-249.
Silvester, R. and J.R.C. Hsu, (1993). Coastal Stabilization: Innovative Concepts. Englewood Cliffs, NJ: Prentice Hall. 578pp.
Silvester, R. and J.R.C. Hsu, (1997). Coastal Stabilization. Singapore: World Scientific. 578pp. (REPRINT of Silvester and Hsu, 1993)
Smith, G.G., Dunkley, E., and C. Soltau, (2000). Shoreline response to harbour developments in Table Bay. Proc. 27th Inter. Conf. Coastal Eng., ASCE, v. 3, pp. 2822-2835.
Soulsby, R., (1997). Dynamics of Marine Sands. Thomas Telford Publ. London.
Tan, S.K. and Y.M. Chiew, (1991). Static equilibrium bays: new relationships. J. Waterway, Port Coastal and Ocean Eng., ASCE, 115 (3): 285-298.
Tan, S.K. and Y.M. Chiew, (1994). Analysis of bayed beaches in static equilibrium. J. Waterway, Port, Coastal and Ocean Eng., ASCE, 120 (2): 145-153.
USACE, (2002). Coastal Engineering Manual Online, Coastal Engineering Research Center, U.S. Army Corps of Engineers。
Van Rijn, L.C., (1998). Principles of Coastal Morphology. Amsterdam: Aqua Publications.
Vichetpan, N., (1969). Equilibrium shapes of coastline in plan. Master Eng. thesis, No. 280, Asian Institute of Technology, Bangkok, Thailand, 52pp.
Watanabe, A., K. Maruyama, T, Shimizu, and T. Sakakiyama, (1986). Numerical prediction model of three-dimensional beach deformation around coastal structures. Coastal Eng. in Japan, 29: 179-194.
Willis, D.H., (1978). The Canadian Coastal Sediment Study. Proc. Coastal Sediments'87, ASCE, pp. 682-693.
Wilkerson, J. C., and M. D. Earle, (1990). A study of differences between environmental reports by ships in the voluntary observing program and measurements from NOAA buoys. J. Geophys. Res., 95: 3373-3385.
Wright, L.D. and A.D. Short, (1984). Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology, 26: 93-118.
Yasso, W.E., (1965). Plan geometry of headland bay beaches. J. Geology, 73: 702-714.
Yu, M.M.J. and J.R.C. Hsu, (2006). Parabolic bay shape equation revisited for practical applications. Proc. 30th Inter. Conf. on Coastal Eng., ASCE, v.4, pp.3478-3490.
Yu, M.M.J, J.R.C. Hsu, T. Yamashita, K.H. Kim, (2011). Geomorphic approach for mitigating impact of harbor construction on sandy beaches. Coastal Eng. Journal. (Accepted)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code