Responsive image
博碩士論文 etd-0905111-125349 詳細資訊
Title page for etd-0905111-125349
論文名稱
Title
具有茀或四苯基噻吩環的有機化合物及聚合物的聚集誘導發光
Aggregation-induced emission of organic compounds and polymers containing fluorene or tetraphenylthiophene ring
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
164
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-19
繳交日期
Date of Submission
2011-09-05
關鍵字
Keywords
奈米群聚體、氫鍵、交替共聚物、群聚誘導放光提升、分子內旋轉受限
nanoaggregates, alternative copolymer, Aggregated-induced emission, hydrogen bond, restricted intramolecular rotation
統計
Statistics
本論文已被瀏覽 5692 次,被下載 740
The thesis/dissertation has been browsed 5692 times, has been downloaded 740 times.
中文摘要
傳統圓盤狀(碟狀) 平面結構之有機小分子及聚合物在稀薄溶液中螢光發光強度雖高,但在高濃度和固體狀態時齊放光反而變弱〈或完全消光〉。相對於傳統發光團(例如:噻咯)而言,非共平面結構之新式發光團反而會隨著濃度增加發光增強,此非傳統之放光行為稱為群聚誘導放光(aggregation-induced emission, AIE)或聚集誘導放光增強(AIE enhancement, AIEE),而此AIE或AIEE效應源於分子內苯環旋轉受限(restricted intramolecular rotation, RIR)所致,這些帶有受限苯環結構之發光團可經由化學結構分子設計合成而得。本論文因而使用四種方法來驗證分子內苯環旋轉對AIEE性質的影響。
首先,我們以萘酚(naphthol)和茀(fluorene)單體之Suzuki偶合法合成交替共聚物(alternative copolymer),此PFN交替共聚物之所以有AIEE性質,源起於萘酚單體內羥基(OH) 間之氫鍵相互作用所致,此氫鍵相互作用可有效抑制分子內苯環之轉動,藉由各種實驗手段(諸如增加濃度、以不好的溶劑促進群聚作用、冷卻溫度及在溶劑揮發時施加剪應力),我們證明了氫鍵作用力為促進PFN強度之原因。
其次,我們將PFN螢光高分子和非螢光高分子聚乙烯吡咯烷酮(poly(vinyl pyrrolidone), PVR)混摻,利用PFN的羥基與PVR的羰基之氫鍵相互作用達到抑制螢光團轉動的目的。隨著PVR在整體系統中的含量增加我們引入大量的羰基以有效地鎖住PFN的螢光團分子轉動。當PFN在混掺物含量為2.33 wt%時,其螢光量子效率(quantum yield)高達0.93,此量子效率相對高於其他具有較高PFN螢光發光團之混合物。
第三,我們合成新穎具四苯環塞吩(tetraphenylthiophene, TP) 側基發光團的乙烯聚合物PTP,此TP側基發光團本身具有AIEE性質,我們首先合成具有雙鍵之TP單體,以進行自由基聚合得到PTP的新穎高分子。此PTP的螢光光譜具有側基單體及群聚體所貢獻之兩個放光峰,而伴隨濃度或非溶劑的增加,整體放光及群聚體所貢獻之放光峰強度隨之增加,此提供AIEE性質強有力的證據。
最後,我們將具有銨酸(ammonium)根之TP衍生TP-NH3+陽離子與聚乙烯磺酸鈉(poly(sodium vinylsulfonate, PSV)聚陰離子(polyanion)行錯合作用(complexation),產生具有遠程靜電相互作用力(long-range electrostatic interaction force)之PSV-TP(x/y) 錯合物系統。此TP螢光單元可以彼此間交互作用,形成以遠程相互作用力達到穩定作用的大群聚區域。將水引入PSV-TP在THF的稀薄溶液中,此TP螢光單元自身聚集形成奈米粒子,此奈米粒子由於AIEE的效應,放光強度隨之提升。當系統中有過量的PSV陰離子時,TP自我聚集增強因而導致螢光增強。相反的,添加氯化鈉電解質會導致TP聚集體之瓦解,故相對應的放光強度降低。將過量的PSV與PSV-TP混合所得之混摻具有極高的量子效率(0.83),此外,此離子性的PSV-TP錯合物膜具有良好的高溫(270度)光譜穩定性(spectral stability)。
Abstract
Traditional organic chromophores and polymers with disc-like, coplanar geometry tend to be highly emissive in the dilute solutions but become weakly luminescent in the concentrated solution and solid states. On the contrast, conventional chromophores (such as silole) with non-coplanar structure exhibit strong fluorescence in the concentrated states due to the aggregation-induced emission (AIE) or AIE enhancement (AIEE) effect originated from the restricted intramolecular rotation (RIR) inherent from the chemical structures of the luminescent materials. To verify the influence of RIR on the AIEE properties, four approaches were attempted in this research.
First, copolymers PFN with alternative fluorene-naphthol unit was prepared through facile Suzuki coupling and was characterized to have AIEE properties due to the hydrogen-bond (H-bond) interactions among the inherent hydroxyl (OH) groups of the naphthol units. The H-bond interactions of PFN copolymer effectively restrict the molecular rotations and experimental variables (such as increasing solution concentration, introducing non-solvent water to solution, cooling and applying shearing forces during solvent evaporation stage etc.) effective in promoting the H-bond interactions result in the emission enhancement.
Second, the fluorescent PFN was blended with poly(vinyl pyrrolidone) (PVR) through facile hydrogen-bond (H-bond) interactions. By the effective H-bond interactions between the OH groups of PFN and the carbonyl functions of PVR. The molecular rotations of PFN can be effectively locked by large amounts of carbonyl groups in PVR. With the efficient H-bond interactions, the PFN/PVR blend with the low content (2.33 wt%) of fluorescent PFN component actually has a high quantum efficiency of 0.93, comparatively higher than other blends containing higher fluorescent PFN.
Third, novel vinyl polymer PTP with pendant AIE-effective tetraphenylthiophene (TP) group was prepared through radical polymerization. The resultant PTP polymer exhibits two discernible emission bands corresponding to monomer and aggregate emissions, respectively. The relative monomer to aggregate emission intensity of the PTP polymer in either the solution or the solid state depends strongly on the extent of aggregations. Increasing solution concentration results in the increasing extent of aggregation and the increasing aggregate/monomer emission ratio and also, the large emission enhancement due to the AIEE effect.
Finally, the TP-derived ammonium (TP-NH3+) cations are complexed with poly(sodium vinylsulfonate) (PSV) polyanion to generate ionic PSV-TP(x/y) systems with long-range electrostatic interactions between the cationic ammonium of TP-NH3+ and the polyanion of PSV. The fluorophoric TP units are associated with each other to form large aggregate domains stabilized by the long-range interactions. Introduction of water into dilute solution of PSV-TP in THF resulted in self-aggregated nanoparticles and the accompanied emission enhancement due to AIEE effect. Introduction of excess PSV polyanions promoted the self-aggregation of the TP fluorophores and resulted in the fluorescence enhancement. Nevertheless, addition of NaCl electrolytes causes the dissociations of the TP aggregates and the corresponding emission reduction. By controlling the additive, the blended PSV-TP film containing excess PSV has a high quantum yield of ΦF = 0.83. In addition, the ionic PSV-TP complex film possesses high spectral stability without spectral variations after annealing at a high temperature of 270 oC.
目次 Table of Contents
TABLE OF CONTENTS I
LIST OF SCHEMES III
LIST OF TABLES IV
LIST OF FIGURES V
Chapter 1 Background 1
1-1 Fluorescence and Phosphorescence 1
1-2 Formation mechanism of Aggregate and Excimer 3
1-3 Definition of H and J aggregates 6
1-4 Aggregation-caused quench (ACQ) in small organic molecules and polymer 7
1-4-1 Small organic molecules 7
1-4-2 Polymer 8
1-5 Difficulty encountered in reducing the aggregations of fluoropho -res in dilute solution 11
1-6 Aggregation-induced emission (AIE) and restriction of intramolecular rotation (RIR) 12
1-6-1 Advantage of AIE 12
1-6-2 Discovery of AIE and the main cause of AIE in relation to restriction of intramolecular rotation (RIR) 13
1-7 Experiments to demonstrate the presence of AIE property 16
1-8 Polyfluorene families as the commonly used fluorescent polymers 57
Chapter 2 Hydrogen Bonds and Aggregation-Induced Emission Enhancement of Organic and Polymeric Fluorophores with Alternative Fluorene and Naphthol Units 60
2-1 Abstract 60
2-2 Introduction 60
2-3 Experimental Section 62
2-4 Instrumentation and Sample Preparation 64
2-5 Results and Discussion 65
2-6 Conclusions 75
2-7 Supporting Information 75
Chapter 3 Restricted Molecular Rotation and Enhanced Emission in Polymer Blends of Poly(fluorene-alt-naphthol) and Poly(vinyl pyrrolidone) with Mutual Hydrogen-Bond Interactions 79
3-1 Abstract 79
3-2 Introduction 79
3-3 Experimentals 81
3-4 Instrumentation and Sample Preparation 81
3-5 Results and discussion 82
3-6 Conclusions 92
3-7 Supporting Information 93
Chapter 4 Enhanced Aggregation Emission of Vinyl Polymer Containing Tetraphenylthiophene Pendant Group 95
4-1 Abstract 95
4-2 Introduction 95
4-3 Experimental Section 98
4-4 Instrumentation and Sample Preparation 99
4-5 Results and Discussion 100
4-6 Conclusions 110
4-7 Supporting Information 111
Chapter 5 Complexation of Tetraphenylthiophene-Derived Ammonium Chloride to Poly(sodium vinylsulfonate) Polyelectrolytes: Aggregation-Induced Emission and Long-Range Interaction 116
5-1 Abstract 116
5-2 Introduction 116
5-3 Experimental Section 118
5-4 Instrumentation and Sample Preparation 120
5-5 Results and Discussion 121
5-6 Conclusions 132
5-7 Supporting Information 133
Chapter 6 Summary 136
Chapter 7 References 139










LIST OF SCHEMES
Scheme 1 Synthesis of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles. 16
Scheme 2 Synthesis of x,y-bis(2,6-diisopropyl)phenyltetraphenylsiloles 18
Scheme 3 Synthesis of 1,1-disubstituted 2,3,4,5-tetraphenylsiloles by post-functionalizations. 19
Scheme 4 Schematic illustration of aggregationinduced emission (AIE) mechanism. 29
Scheme 5 Illustration of CMC detection based on the AIE mechanism. 35
Scheme 6 Syntheis of silole-loaded fluorescent silica nanoparticles and magnetic fluorescent Fe3O4@SiO2 core-shell nanoparticles 40
Scheme 2-1 Synthetic procedures of organic compound FN and copolymer PFN 62
Scheme 4-1 Preparation of vTP monomer and the subsequent radical polymerization to yield vinyl polymer of PTP. 97
Scheme 5-1 Synthesis of TPNH2 and TPNH3+Cl- and the complexation of TPNH3+Cl- with PSV to generate the PSV-TP complex 119
Scheme 5-2 chematic illustration for the construction and dissociation of long-range interactions between TP-NH3+ cations and PSV polyanions and its relationship to AIEE-oriented fluorescence 123














LIST OF TABLES
Table 3-1 Composition of PFN/PVR mixture used in this study and the corresponding quantum efficiency (ΦF) of the solid blends. Quantum efficiency measured from integrating sphere. 83
Table 4-1 Data calculated from the fluorescent decay curves 107
Table 5-1 Average hydrodynamic diametera (Dh) of PSV-TP(x/y) solutions determined from dynamic light scattering. 125
Table 5-2 Quantum yielda (ΦF) of solid films of PSV-TP(x/y) complexes with and without the PSV additives 130




















LIST OF FIGURES
Figure 1-1 A generalized: Jablonski diagram: photons are absorbed and re-emitted with different frequencies (wavelengths) 3
Figure 1-2 a) Excimer formation with the corresponding monomer and excimer emissions; and b) schematic diagrams for aggregate formation between fluorophore segments of inter-chain and intra-chain.. 5
Figure 1-3 Schematic representation of the relationship between chromophore arrangement and spectral shift based on the molecular exciton theory. 6
Figure 1-4 Formations of pyrene excimer by a) dynamic and b) static excited states 8
Figure 1-5 Synthesis of poly(2-methoxy-5-(2’-ethylhexykoxy)-1,4-phenylenevinylene) (MEH-PPV) via Gilch polymerization route. 9
Figure 1-6 Normalized photoluminescence (PL) spectra of MEH-PPV in different environments. (a) PL of a 0.25% w/v solution of MEH-PPV in CB (solid curve), and the film resulting from spin-casting the solution (dotted curve). The small dashed curves show Gaussian fits to the three visible peaks of the solution PL; (b) PL of MEH-PPV films cast from a 0.25% w/v solution in CB (solid curve, same as dashed curve in (a)), a 0.25% w/v solution in THF (dotted curve), a 1.0% solution in THF (gray solid curve), a 1.0% solution in CB (dashed curve) and the film cast from the 1.0% CB solution after annealing (thin solid curve). The inset shows the chemical structure of MEH-PPV; ref. 6). 10
Figure 1-7 Molecular structure and conformational rotamers of 1. and (A) PL spectra of in water–ethanol mixture (90:10 by volume), absolute ethanol, and solid film; concentration of 1: 10 mM; excitation wavelength (nm): 381 (for solutions), 325 (for film). (B) Quantum yield of 1 vs. solvent composition of the water–ethanol mixture.. 15
Figure 1-8 (Left) Chemical structure of HPS. (Right) HPS in the cetonitrile/water mixtures containing different volume fractions of water; photographs taken under UV illumination 20
Figure 1-9 (A) PL spectra of HPS in acetonitrile/water mixtures with different water fractions. (B) Quantum yield (ΦF) of HPS versus solvent composition of acetonitrile/water mixture. ΦF for a thin film of HPS (ΦF,f) is given in panel (B) for comparison. 21
Figure 1-10 (A ) Absorption spectra of HPS in acetonitrile/water mixtures with different water fractions. Size distributions of the nanoparticles of HPS in the acetonitrile/water mixtures containing (B) 80% and (C) 90% water 22
Figure 1-11 (A) PL spectra of HPS in THF at different temperatures; [HPS] = 10μM. (B) NMR peaks of phenyl protons of HPS in dichloromethane-d2 at different temperatures. 23
Figure 1-12 Switching the emission of HPS by a heating–cooling cycle. Photographs taken under UV illumination at (A) room temperature (original solid powder), (B)~200 oC (melt liquid), and (C) room temperature. 25
Figure 1-13 (A) PL spectra of acetone solutions of HPS-iPx,y (22; 10 μM) and (B–D) photographs of the HPS-iPx,y solutions taken under UV illumination (365 nm). 26
Figure 1-14 PL spectra of P19 in chloroform (molecularly dissolved solution), a methanol/ chloroform mixture (9:1 by volume; nanoaggregate suspension), and solid state (thin film). 27
Figure 1-15 a ORTEP drawing of HPS. b Packing diagrams of HPS crystals, where the interplane distance is 10.04 Å and the intermolecular distance within the unit cell is 7.61 Å 28
Figure 1-16 Photos of the spots of MPPS on the TLC plates in the petri dish sets (A) in the absence of and (B) after exposure to the vapor of chloroform solvent for about 1 min. Photo in (C) is taken in about 2 min after the solvent is evaporated. All the photographs are taken under UV illumination at room temperature 30
Figure 1-17 Effect of acetone vapor on the PL spectra of films of siloles (A) MPPS and (B) HPS coated on quartz cells at different exposure times. 31
Figure 1-18 (A) Powder X-ray diffractograms and (B) photoluminescence spectra of crystalline and amorphous solids of MPPS. 32
Figure 1-19 (A) PL spectra of A2HPS (14) in THF/H2O mixtures (100:1 by volume) with different concentrations of picric acid. (B) Plot of PL intensity versus PA concentration. (C) Linear region of the (I0/I - 1)–[PA] plot in panel (B). 33
Figure 1-20 (A) A2HPS and its protonated form H H2A2HPS2+. (B) Emission spectra of A2HPS in aqueous solutions with different pH values and c effect of pH on the emission of A2HPS. Inset: Photographs of A2HPS taken under illumination of a UV lamp at pH values of 2 and 12. 34
Figure 1-21 (A) PL spectra of buffer solution (pH = 4) of H2A2HPS2+ with different concentration of CTAB. (B) Plot of emission peak intensity versus [CTAB]. (C) Photographs of H2A2HPS2+ in aqueous solutions with different [CTAB] were taken under illumination of a handheld UV lamp. 36
Figure 1-22 Plot of PL intensity of H2A2HPS2+ versus concentration of lecithin in an acidic aqueous medium (pH = 3). Photographs of the solutions were taken under illumination of a handheld UV lamp. 37
Figure 1-23(A) PL spectra of H2A2HPS2+ in buffer solutions (pH = 2) containing different amounts of BSA and (B) plot of PL intensity versus BSA concentration. Inset: photographs of H2A2HPS2+ in buffer solutions without and with 500 lg/mL of BSA taken under illumination of a handheld UV lamp. (C) PL spectra of H2A2HPS2+ in buffer solutions (pH = 2) containing different amounts of hs DNA and (D) plot of PL intensity versus hs DNA concentration. Inset: photographs of H2A2HPS2+ in buffer solutions without and with 200 lg/mL of hs DNA taken under illumination of a handheld UV lamp. 38
Figure 1-24 (A) Schematic illustration of a sandwich-type immunoassay process using polyelectrolyte-encapsulated, antibody-functionalized HPS nanocrystal as fluorescent bioprobe. (B) Plot of PL intensity of the HPS nanocrystal functionalized by goat antimouse immunoglobulin G versus the concentration of mouse immunoglobulin G (MIgG). Data for the system using fluorescein isothiocyanate (FITC) as bioprobe is shown for comparison. 39
Figure 1-25 (A) SEM and b TEM images of fluorescent silica nanoparticles loaded with silole 66; inset of panel (B): nanoparticles homogeneously dispersed in ethanol under UV illumination. Fluorescent microscopy images of living HeLa cells stained by fluorescent silica nanoparticles: (C) phase contrast images and (D) fluorescence images. 41
Figure 1-26 (A) SEM image of electrospun HPS/PMMA composite film. Inset: photograph of the shape of a water droplet on the film with a contact angle of 115 ± 2.6o. (B) PL spectra of the electrospun film in pure water (HPS/PMMA) and in an aqueous Fe3+solution (HPS/PMMA + Fe3+). Inset: reversible switching between emissive and nonemissive states by immersing the HPS/PMMA film into pure water and Fe3+solution, respectively. 42
Figure 1-27 SEM images of HPS nanowires with average diameters (d) of (A) 70 and (B) 150 nm. (C) PL spectra of HPS nanowires with average diameters of 35 and 250 nm. Inset: plot of emission maximum (λmax) versus nanowire diameter (d). 43
Figure 1-28 (A) Amorphous and (B) crystalline films of HPS. (C) Shapes of water droplets on, and colors of light emissions from, the amorphous and crystalline films of HPS. (D) Reversible switching of contact angle and emission color of HPS by repeated exposure of its amorphous and crystalline films to ethanol and toluene vapors, respectively adapted from Langmuir 2008, 24, 2157–2161). 45
Figure 1-29 (A and B) SEM, (C and D) TEM, and (E and F) fluorescence icroscopy images of microfibers of 70c consisting of nanofibrils. Insets: enlarged images [(B) and (F)] and electron diffraction pattern (D). 46
Figure 1-30(A) Solution (10 μM) PL emission spectra (excitation wavelength: 320 nm) and (B) the relative quantum yields of TP in THF/water mixtures with varied compositions.. 47
Figure 1-31 (A) Solution (10 μM) PL emission spectra (excitation wavelength: 350 nm) and (B) the relative quantum yields of TP-Qu in THF/water mixtures with varied compositions. 48
Figure 1-32 Solution UV-vis absorption spectra of (A) TP and (B) TP-Qu (10 μM)in THF/water mixtures with varied compositions. 50
Figure 1-33 Solution PL excitation (PLE) spectra of (A)TP (10 μM) in THF/water mixtures with varied compositions. The PLE spectra were monitored at 404 nm. And (B) TP-Qu (10 μM) in THF/water mixtures with varied compositions. The PLE spectra were monitored at 464 nm.. 50
Figure 1-34 (A) TP (upper left) and TP-Qu (upper right) solutions (10 μm in THF) under illumination with a 365 nm UV lamp, and the simulated conformations of TP (lower left) and TP-Qu ((lower right) molecules with minimum energy and (B) Rotational energy barrier as the function of the rotational angle of the C-2 rotors in the TP and TP-Qu molecules. (adapted from J. Phys. Chem. B 2010, 114, 10302–10310). 52
Figure 1-35 Solution PL emission spectra of the PS-Qu (10 μM) in THF/water mixtures with varied compositions. Excitation wavelength ) 320 nm. Insets: (A) PS-Qu in THF/H2O ) 100/0; (B) solution A under irradiation by a 365 nm UV lamp; (C) PS-Qu in THF/H2O ) 10/90; and (D) solution C under irradiation by a 365 nm UV lamp). 53
Figure 1-36Summary of relative fluorescence intensities from the dilute solutions (10 μM) of TP, TP-Qu, and PS-Qu in DMF at different temperatures.. 55
Figure 1-37 Simulated conformation of chain segments of PS-Qu with 10 monomer units (upper A: magnified portion of the selected green area in the lower panel B). 56
Figure 1-38 Chemical structure of the substituted polyfluorenes.. 57
Figure 1-39 Suzuki coupling of conjugated polymers, whereas Ar is an aromatic group and R is aliphatic chain (such as C6H13or C8H17). 58


Figure 2-1 (A) The solution (10-5 M) fluorescence emission spectra of FN in chloroform/methanol solutions with different volume fractions of methanol (excited at 350 nm) and (B) the solution quantum yield (ΦF) in relationship to the volume fraction of methanol. 67
Figure 2-2 (A) The solution (10-5 M) fluorescence emission spectra of PFN in chloroform/methanol solutions with different volume fractions of methanol (excited at 350 nm) and (B) the solution quantum yield (ΦF) in relationship to the volume fraction of methanol. 68
Figure 2-3 Hydrodynamic diameter of PFN (10-5 M) solution in chloroform/methanol mixtures with different volume fractions of methanol 69
Figure 2-4 Fluorescent emission spectra of (A) FN and (B) PFN films at different temperatures. (excited at 350 nm) 70
Figure 2-5 The hydroxyl –OH stretching bands of (A) FN and (B) PFN films at different temperatures 70
Figure 2-6 Fluorescent emission spectra and hydroxyl stretching bands (insets) of (A) the FN and (B) the PFN films prepared from different preparative solution states. (excited at 350 nm). 71
Figure 2-7 The simulated molecular arrangements of FN dimer associated with intermolecular H-bonded –OH functions. 73
Figure 2-8 The simulated molecular conformers of two heptamers of the same chain sequence with the preferred H-bonded interactions (1 and 6 refer to the position of naphthol attached to the neighboring fluorene ring). 74


Figure 3-1 (A) chemical structure of PFN and (B) 81
Figure 3-2 Emission spectra of PFN (10-3 M in chloroform) solution in the presence of different amount of PVR. 84
Figure 3-3 Hydrodynamic diameter of PFN (10-3 M in chloroform) solution in the presence of different amount of PVR. 85
Figure 3-4 1H NMR spectra of PFN (10-3 M in CDCl3) solution in the presence of different amounts of PVR 87
Figure 3-5 DSC thermograms of solid PFN/PVR blends of different compositions. (heating rate = 20 oC/min) 88
Figure 3-6 Infrared spectra of the PFN/PVR blends on (A) the amide carbonyl and (B) the hydroxyl stretching regions.. 89
Figure 3-7 Fluorescent emission spectra of PFN/PVR blends of different compositions 90
Figure 3-8 Fluorescent emission spectra of PFN/PVR blends of different compositions. 91
Figure 3-9 (A) The simulated molecular arrangements of Fluorene-naphthol (Flu-Nph) unit associated with repeat units of PVR by H-bond and (B) The rotational energy barrier as the function of the rotational angle of the single bond connecting fluorene and naphthol ring. 92


Figure 4-1 Chemical structures of 1-methyl-1,2,3,4,5-pentaphenylsilole, 2,3,4,5,-tetraphenylthiophene (TP), TP-derivative of TP-Qu and vinyl polymer of PS-Qu. 96
Figure 4-2 Photoluminescent spectra of PTP in THF of various concentrations. (excited at 330 nm) 101
Figure 4-3 Hydrodynamic diameter of PTP (10-5 M) in THF/water mixture solvent with different ratios (v/v %) 102
Figure 4-4 UV-vis absorption spectra of PTP (10-5 M) in THF/water mixtures with different ratios (v/v %) 103
Figure 4-5(A) Photoluminescent emission spectra of PTP (10-5 M) in THF/water mixtures with different ratios (v/v %; excited at 330 nm) and (B) the measured quantum yields from the corresponding solution mixtures 104
Figure 4-6 (A) Photoluminescent emission spectra of solution (10-5 M) of PTP in DMF at reduced temperatures (excited at 330 nm) and (B) The integrated area of the PL emission spectra in a) versus temperatures 105
Figure 4-7 (A) Photoluminescent emission spectra of solid PTP at elevated temperatures (excited at 330 nm) and (B) The integrated area of the PL emission spectra in (A) versus temperatures. 106
Figure 4-8 Simulated chain conformation of PTP segment with 23 monomer units (isolated monomer unit was pointed by red arrow and the circled area refers to aggregated units) 109
Figure 4-9 (A) Electroluminescent spectrum of PTP at 8 V. Device structure was ITO/PEDOT:PSS (100 nm)/PTP (150 nm)/Al (120 nm). (B) Current density and Luminance vs voltage characteristics of polymer PTP 110


Figure 5-1 Chemical structures of organic compounds silole, TP and TP-Qu and vinyl polymer PS-Qu 118
Figure 5-2 Solution (10-6 M) fluorescent emission spectra of A) PSV-TP(1/1), B) PSV-TP(2/1), C) PSV-TP(4/1) and D) the summarized ΦF in THF/water mixtures of different compositions (excited at 350 nm). 124
Figure 5-3 Solution fluorescent emission spectra of A) PSV-TP(1/1), B) PSV-TP(2/1), C) PSV-TP(4/1) and D) the summarized ΦF in THF of different concentrations (excited at 350 nm) 126
Figure 5-4 Effect of NaCl and PSV inclusions on solution emissions with a concentration of A) 5x10-7 M and B) 5x10-5 M. (solvent mixtures of THF/water = 5/95 (v/v) was applied; excited at 350 nm). 127
Figure 5-5 Hydrodynamic diameter of PSV-TP (5 x 10-7 M), PSV-TP (5 x 10-7 M)/PSV (5 x 10-6 M) and PSV-TP (5 x 10-7 M)/PSV (5 x 10-6 M)/NaCl (5 x 10-4 M) solution in THF/H2O (vol/vol = 5/95) mixtures. 128
Figure 5-6 1H NMR spectra for solutions of PSV-TP complex in A) d8-THF/D2O (5/95), B) d8-THF/D2O (5/95) and PSV (5x10-4 M) and C) d8-THF/D2O (5/95), PSV (5x10-4 M) and NaCl (5x10-2 M).. 129
Figure 5-7 The spectral stability of PSV-TP, PSV-TP/PSV and PSV/PSV/NaCl films before and after annealing at 270 oC for 1 hr. 131
Figure 5-8 Simulated chain conformations of PSV-TP(1/1) (left) and PSV-TP(4/1) (right).. 132
參考文獻 References
1. Gratzel, M.; Thomas, J. K.; Modern Fluorescence Spectroscopy, Vol. 2 E.L. Wehry, Ed, Plenum Press, New York, N.Y., 1976, p. 169.
2. Bernard Valeur. Molecular Fluorescence: Principles and Applications, Wiley-VCH, Weinheim New York, 2002.
3. Yao, H.; Domoto, K.; Isohashi, T.; Kimura, K.; Langmuir 2005, 21, 1067–1073.
4. Winnik, F. M.; chem. Rev. 1993, 93, 587–614.
5. Wudl, F.; Srdanov, G.; United States Patent , 1993,5189136.
6. Nguyen, T. Q.; Martini, I. B.; Liu, J.; Schwartz, B. J.; J. Phys. Chem. B. 2000, 104, 237–255.
7. Nguyen, T. Q.; Doan, V.; Schwartz, B. J.; J. Chem. Phys. 1999, 110, 4068–4078.
8. Chiu, C. W.; Hong, J. L.; Su, F. K.; Chen, C. L.; Journal of Photochemistry and Photobiology A: Chemistry 2006, 180, 136–142.
9. Su, F.K.; Hong, J. L.; Liao, G. F.; Lin, L. L.; Hwang, G. L.; Day, T. C.; J. Appl. Polymer. 2006, 100, 3784–3788.
10. Su, F. K.; Hong, J. L.; Lin, L. L.; J. Appl. Polymer. 2008, 107, 124–131.
11. Mao, C. H.; Hong, J. L.; Yen, A. C.; Journal of Polymer Science: Part B: Polymer Physics, 2008, 46, 631–639.
12. Su, F. K.; Hong, J. L.; Lin, L. L.; J. Appl. Polymer.2007, 106, 3308–3314.
13. (a) Tan, W. H. ; Wang, K. M.; Drake, T. J.; Curr. Opin. Chem. Biol. 2004, 8, 547–553; (b) Sapsford, K. E.; Berti, L.; Medintz, I. L.; Angew. Chem., Int. Ed. 2006, 45, 4562–4588; (c) Borisov, S. M.; Wolfbeis, O. S.; Chem. Rev., 2008, 108, 423–461.
14. (a) Alivisatos, A. P.; Gu, W. ; Larabell, C.; Annu. Rev. Biomed. Eng. 2005, 7, 55–76; (b) Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H.; Nat. Mater. 2005, 4, 435–446; (c) De, M.; Ghosh, P. S.; Rotello, V. M.; Adv. Mater. 2008, 20, 4225–4241.
15. Tang, B. Z.; Zhan, X.; Yu, G. ; Lee, P. P. S.; Liu, Y.; Zhu, D.;J. Mater. Chem. 2001, 11, 2974–2978.
16. Fremantle, M.;Chem. Eng. News 2001, 79, 29.
17. Hong, Y.; Lama, J. W. Y.; Tang, B. Z.;Chem. Commun. 2009, 4332–4353.
18. Braye, E. H.; Hübel, W.; Chem. Ind. (London) 1959, 1250–1251.
19. Braye, E. H.; Hübel, W.; Caplier, I., J. Am. Chem. Soc.1961, 83, 4406–4413.
20. Dubac, J.; Laporterie, A.; Manuel, G.; Chem. Rev. 1990, 90, 215–263.
21. Colomer, E.; Corriu, R. J. P.; Lheureux, M.; Chem. Rev. 1990, 90, 265–282.
22. Sadimenko, A. P.; Adv. Heterocycl. Chem. 2001, 79, 115–197.
23. Lee, V. Y.; Sekiguchi, A.; Ichinohe, M.; Fukaya, N.; J. Organomet. Chem. 2000, 611, 228–235.
24. Tamao, K.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Yamaguchi, S.; J. Am. Chem. Soc.1996, 118, 11974–11975.
25. Yamaguchi, S.; Tamao, K.; J. Chem. Soc., 1998, 3693–3702.
26. Wrackmeyer, B.; Coord. Chem. Rev. 1995, 145, 125–156.
27. Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C.; Chem. Rev.1993, 93, 1371–1448.
28. Murata, H.; Malliaras, G. G.; Uchida, M.; Shen, Y.; Kafafi, Z. H.;
Chem. Phys. Lett.2001, 339, 161–166.
29. Murata, H.; Kafafi, Z. H.; Uchida, M.; Appl. Phys. Lett.2002, 80, 189–191.
30. Ohshita, J.; Kai, H.; Takata, A.; Iida, T.; Kunai, A.; Ohta, N.; Komaguchi, K.; Shiotani, M.; Adachi, A.; Sakamaki, K.; Okita, K.; Organometallics 2001, 20, 4800–4805.
31. Hay, C.; Hissler, M.; Fischmeister, C.; Rault-Berthelot, J.; Toupet, L.; Nyulaszi, L.; Reau, R.; Chem. Eur. J.2001, 7, 4222–4236.
32. Yamaguchi, S.; Endo, T.; Uchida, M.; Izumizawa, T.; Furukawa, K.; Tamao, K.; Chem. Eur. J.2000, 6, 1683–1692.
33. Birks, J. B.; Photophysics of Aromatic Molecules (Wiley, New York, 1970, p. 372.
34. An, B. K.; Kwon, S. K.; Jung, S. D.; Park, S. Y.; J. Am. Chem. Soc.2002, 124, 14410–14415.
35. Bhongale, C. J.; Hsu, C. S.; Angew. Chem. Int. Ed. 2006, 45, 1404–1408.
36. Han, M. R.; Hara, M.; New J. Chem. 2006, 30, 223–227.
37. Yuan, C.; Tao, X.; Ren, Y.; Li, Y.; Yang, J.; Yu, W.; Wang, L.; Jiang, M.; J. Phys. Chem. C 2007,111, 12811–12816.
38. Wang, H.; Xie, Z.; Ma, Y.; Shen, J.; Sci. China Ser. B 2007,50, 433–438.
39. Chen, J.; Cao, Y.; Macromol. Rapid Commun. 2007, 28, 1714–1742.
40. Lee, Y. T.; Chiang, C. L.; Chen, C. T.; Chem. Commun.2008, 217–219.
41. Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z.; Chem. Commun.2001, 1740–1741.
42. Chen, H.; Lam, W. Y.; Luo, J.; Ho, Y.; Tang, B. Z.; Zhu, D.; Wong, M.; Kwok, H. S.; Appl. Phys. Lett. 2002, 81, 574–576.
43. Chen, J.; Law, C. C. W.; Lam, J. W. Y.; Dong, Y.; Lo, S. M. F.; Williams, I. D.; Zhu, D.; Tang, B. Z.; Chem. Mater.2003, 15, 1535–1546.
44. Chen, J.; Xie, Z.; Lam, J. W. Y.; Law, C. C. W.; Tang, B. Z.; Macromolecules 2003,36, 1108–1117.
45. Chen, J.; Peng, H.; Law, C. C. W.; Dong, Y.; Lam, J. W. Y.; Williams, I. D.; Tang, B. Z.; Macromolecules 2003, 36, 4319–4327.
46. Chan, C. P. Y.; Haeussler, M.; Tang, B. Z.; Dong, Y.; Sin, K. K.; Mak, W. C.; Trau, D.; Seydack, M.; Renneberg, R.; J. Immuno. Methods
2004, 295, 111–118.
47. Ren, Y.; Lam, J. W. Y.; Dong, Y .Q.; Tang, B. Z.; Wong, K. S.; J. Phys. Chem. B 2005,109, 1135–1140.
48. Ren, Y.; Dong, Y.; Lam, J. W. Y.; Tang, B. Z.; Wong, K. S.; Chem.
Phys. Lett. 2005,402, 468–473.
49. Li, Z.; Dong, Y. Q.; Xiu, B.; Tang, Y.; Haeussler, M.; Tong, H.; Dong, Y. P.; Lam, J. W. Y.; Ren, Y.; Sung, H. H. Y.; Wong, K. S.; Gao, P.; Williams, I. D.; Kwok, H. S.; Tang, B. Z.; J. Phys. Chem. B 2005, 109, 10061–10066.
50. Chen, J.; Xu, B.; Yang, K.; Cao, Y.; Sung,; Williams, I. D.; Tang, B. Z.; J. Phys. Chem. B 2005,109, 17086–17093.
51. Dong, Y. Q.; Lam, J. W. Y.; Li, Z.; Qin, A.; Tong, H.; Dong, Y. P.; Feng, X. D.; Tang, B. Z.; J. Inorg. Organomet. Polym. Mater. 2005, 15, 287–291.
52. Mi, B.; Dong, Y. Q.; Li, Z.; Lam, J. W. Y.; Haeussler, M.; Sung, H. H. Y.; Kwok, H. S.; Dong, Y. P.; Williams, I. D.; Liu, Y.; Luo, Y.; Shuai, Z.; Zhu, D.; Tang, B. Z.; Chem. Commun. 2005, 3583–3585.
53. Yu, G. ; Yin, S.; Liu, Y.; Chen, J.; Xu, X.; Sun, X.; Ma, D.; Zhan, X.; Peng, Q.; Shuai, Z.; Tang, B. Z.; Zhu, D.; Fang, W.; Luo, Y.; J. Am. Chem. Soc. 2005,127, 6335–6346.
54. Bhongale, C. J.; Chang, C. W.; Diau, E. W. G.; Hsu, C. S.; Dong, Y. Q.; Tang, B. Z.; Chem. Phys. Lett. 2006, 419, 444–449.
55. Dong, Y. Q. ; Lam, J. W. Y.; Qin, A.; Li, Z.; Sun, J. Z.; Dong, Y. P.; Tang, B. Z.; J. Inorg. Organomet. Polym. Mater. 2007,17 , 673–678.
56. Heng, L.; Zhai, J.; Qin, A. ; Zhang, Y.; Dong, Y.; Tang, B. Z.; Jiang, L.; Chemphyschem 2007,8 , 1513–1518.
57. Dong, Y. Q.; Lam, J. W. Y.; Qin, A.; Li, Z.; Liu, J. Z.; Sun, J. Z.; Dong, Y. P.; Tang, B. Z.; Chem. Phys. Lett. 2007, 446, 124–127.
58. Heng, L.; Dong, Y. Q.; Zhai, J.; Tang, B. Z.; Jiang, L.; Langmuir 2008, 24, 2157–2161.
59. Li, Z.; Dong, Y. Q.; Lam, J. W. Y.; Sun, J. X.; Qin, A. J.; Haeussler, M.; Dong, Y. P.; Sung, H. H. Y.; Williams, I. D.; Kwok, H. S.; Tang, B. Z.; Adv. Funct. Mater. 2009, 19, 905–917.
60. Fan, X.; Sun, J. L.; Wang, F. Z.; Chu, Z. Z.; Wang, P.; Dong, Y. Q.; Hu, R. R.; Tang, B. Z.; Zou, D. C.; Chem. Commun. 2008, 2989–2991.
61. Tang, B. Z.; Zhan, X.; Yu, G.; Lee, P. P. S.; Liu, Y.; Zhu, D.; J. Mater.Chem. 2001, 11, 2874–2877.
62. Tang, B. Z.; Macromol. Chem. Phys. 2008, 209, 1303–1307.
63. Haeussler, M.; Qin, A. J.; Tang, B. Z.; Polymer 2007, 48, 6181–6204.
64. Haeussler, M.; Tang, B. Z.; Adv. Polym. Sci. 2007, 209, 1–58.
65. Viruela, P. M.; Viruela, R.; Orti, E.; Bredas, J. L.; J. Am. Chem. Soc. 1997, 119, 1360–1369.
66. Chen, C. C.; Lay, T. H.; Bozzelli, J. W.; J. Phys. Chem. A 2003, 107, 6451–6456.
67. Peyrot, V.; Barbier, P.; Sarrazin, M.; Briand, C.; Andreu, J. M.; Photochem. Photobiol. 1999, 70, 710–718.
68. Zhang, X. J.; Jenekhe, S. A.; Macromolecules 2000, 33, 2069–2082.
69. Lin, T.; He, Q. G.; Bai, F. L.; Dai, L. M.; Thin Solid Films 2000, 363, 122–125.
70. Natrajan, L. S.; Blake, A. J.; Wilson, C. ; Weinstein, J. A.; P. L. Arnold, Dalton Trans. 2004, 3748–3755.
71. Muller, J.G.; Anni, M.; Scherf, U.; Lupton, J. M.; Feldmann,; J. Phys. Rev. B 2004, 70, 35205.
72. Hashimoto, S.; Hagiri, M.; Matsubara, N.; Tobita, S.; Phys. Chem. Chem. Phys 2001, 3, 5043–5051.
73. Blanchard, P.; Brisset, H.; Riou, A.; Hierle, R.; Roncali, J.; J. Org.Chem. 1998, 63, 8310–8319.
74. Riess G.; Prog. Polym. Sci. 2003, 28, 1107–1170.
75. Capek, I.; Adv. Colloid Interfac. 2002, 99, 77–162.
76. Capek, I.; Chern, C. S.; Adv. Polym. Sci. 2001,155, 101–165.
77. Khanal, A.; Inoue, Y.; Yada, M.; Nakashima, K.; J. Am. Chem. Soc. 2007, 129, 1534–1535.
78. Kronholz, S.; Rathgeber, S.; Karthauser, S.; Kohlatedt, H.; Clemens, S.; Schneller, T.; Adv. Funct. Mater. 2006, 16, 2346–2354.
79. Matsune, H.; Tago, T.; Shibata, K.; Wakabayashi, K.; Kishida, M.; J. Nanopart. Res. 2006, 8, 1083–1087.
80. Gradzielski, M.; Curr. Opin. Colloid In. 2004, 9, 256–263.
81. Torchilin, V. P.; Pharmaceut. Res. 2007, 24, 1–16.
82. Gajbhiye, V.; Kumar, P. V.; Tekade, R. K.; Jain, N. K.; Curr. Pharm. Design 2007, 13, 415–429.
83. Nishiyama, N.; Kataoka, K.; Adv. Polym. Sci. 2006, 193, 67–101.
84. Kostarelos, K.; Miller, A. D.; Chem. Soc. Rev. 2005, 34, 970–994.
85. Qi, K.; Ma, Q. G.; Remsen, E. E.; Clark, C. G.; Wooley, K. L.; J. Am. Chem. Soc. 2004, 126, 6599–6607.
86. Kwon, G. S.; Crit. Rev. Ther. Drug 2003, 20, 357–403.
87. Jin, J.; Thesis, M. S.; Zhejiang University, May 2008.
88. Fendler, E. J.; Fendler, J. H.; Advances in Physical Organic Chemistry,1970, 8 (Academic Press, New York)
89. Tang, L.; Jin, J.; Zhang, S.; Mao, Y.; Sun, J.; Yuan, W.; Zhao, H.; Xu, H.; Qin, A.; Tang, B. Z.; Sci. China Ser. B 2009, 52, 755–759.
90. Heng, L.; Wang, X.; Dong, Y.; Zhai, J.; Tang, B. Z.; Wei, T.; Jiang, L.; Chem. Asian J. 2008, 3, 1041–1045.
91. Cheng, K. H.; Zhong, Y.; Xie, B. Y.; Dong, Y. Q.; Hong, Y.; Sun, J. Z.; Tang, B. Z.; Wong, K. S.; J. Phys. Chem. C 2008, 112, 17507–17511.
92. Xu, J.P.; Song, Z. G.; Mei, J.; Jia, L.; Qin, A. J.; Sun, J. Z.; Ji, J.; Tang, B. Z.; Analyst 2011, 136, 2315–2321.
93. Lai, C. T.; Hong, J. L.; J. Phys. Chem. B 2010, 114, 10302–10310.
94. Dieter, N. Macromol.; Rapid Commun. 2001, 22, 1365–1385.
95. Scherf, U.; List, E. J. W.; Adv. Mater. 2002, 14, 477–487.
96. Fukuda, M.; Sawaka, K.; Yoshino, K. Jpn.; J. Appl. Phys. 1989, 28, 1433–1435.
97. Miyaura, N.; Yanagi, T.; Suzuki, A.; Synth. Commun. 1981, 11, 513-519.
98. Diederich, F.; Stang, P. J.; In Metal-Catalyzed Cross Coupling Reactions, Wiley-VCH, 1998, 231–269.
99. Rehahn, M.; Schluter, A. D.; Wegner, G.; Feast, W.; J. Polymer 1989, 30, 1054–1060.
100. Zotti, G.; Schiavon, G.; Zecchin, S.; Morin, J. F.; Leclerc, M.; Macromolecules 2002, 35, 2122–2128.
101. Tsuie, B.; Reddinger, J. L.; Sotzing, G. A.; Soloducho, J.; Katritzky, A. R.; Reynolds, J. R.; J. Mater. Chem. 1999, 9, 2189–2200.
102. Leclerc, M.; J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2867–2873.
103. Pei, Q.; Yang, Y.; J. Am. Chem. Soc. 1996, 118, 7416–7417.
104. Grice, A. W.; Bradley, D. D. C.; Bemius, M. T.; Inbasekaran, M.; Wu, W. W.; Woo, E. P. ; Appl. Phys. Lett. 1998, 73, 629–631.
105. Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M.; Acta Polym. 1998, 49, 439–444.
106. Lee, J. H.; Hwang, D. H.; Chem. Commun. 2003, 2836–2837.
107. Chou, C. H.; Shu,C.F.; Macromolecules 2002, 35, 9673–9677.
108. Li, J.; Bo, Z.; Macromolecules 2004, 37, 2013–2015.
109. Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W.; Adv. Mater. 2000, 12, 1737–1750.
110. Grell, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Adv. Mater. 1997, 9, 798–802.
111. Kreyenschmidt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W. D.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099–1103.
112. Chen, S. A.; Lu, H. H. Huang C. W. Adv. Polym. Sci. 2008, 212, 49–84.
113. Gong, X.; Iyer, P. K.; Moses, D.; Bazan, G. C.; Heeger, A. J.; Xiao, S. S. Adv. Funct. Mater. 2003, 13, 325–330.
114. Teetsov, J.; Fox, M. A. J. Mater. Chem. 1999, 9, 2117–2122.
115. Klärner, G.; Davey, M. H.; Chen, W.-D.; Scott, J. C.; Miller, R. D. Adv. Mater. 1998, 10, 993–997.
116. Xia, C.; Advincula, R. C. Macromolecules 2001, 34, 5854–5859.
117. Yu, W. L.; Pei, J.; Huang, W.; Heeger, A. J. Adv. Mater. 2000, 12, 828–831.
118. Setayesh, S.; Grimsdale, A.c.; Weil, T.; Enkelmann, V.; Mullen, K.; Meghdadi, F.; List, E. J. Leising, G. J. Amer. Chem. Soc. 2001, 123, 946–953.
119. Marsitzky, D.; Vestberg, R.; Blainey, P.; Tang, B. T.; Hawker, C. J.; Carter, K. R. J. Am. Chem. Soc. 2001, 123, 6965–6972.
120. Tong, H.; Hong, Y.; Dong, Y.; Häußler, M.; Lam, J. W. Y.; Guo, Z.; Li, Z.; Guo, Z.; Tang, B. Z. Chem. Commun. 2006, 3705–3707.
121. Tong, H.; Dong, Y.; Hong, Y.; Häussler, M.; Lam, J. W. Y.; Sung, H. H.-Y.; Yu, X.; Sun, J.; Williams, I. D.; Kwok, H. S.; Tang, B. Z. J. Phys. Chem. C 2007, 111, 2287–2294.
122. Dong, S.; Li, Z.; Qin, J. J. Phys. Chem. B 2009, 113, 434–441.
123. Wang, Z.; Shao, H.; Ye, J.; Tang, L.; Lu, P. J. Phys. Chem. B 2005, 109, 19627–19633.
124. Tong, H.; Hong, Y.; Dong, Y.; Ren, Y.; Häussler, M.; Lam, J. W. Y.; Wong, K. S.; Tang, B. Z. J. Phys. Chem. B 2007, 111, 2000–2007.
125. Chen, J.; Xu, B.; Quyang, X.; Tang, B. Z.; Cao, Y. J. Phys, Chem. A 2004, 108, 7522–7526.
126. Yuan, C. X.; Tao, X. T.; Wang, L.; Yang, J. X.; Jiang, M. H. J. Phys. Chem. C 2009, 113, 6809–6814.
127. Liu, Y.; Tao, X.; Wang, F.; Dang, X.; Zou, D.; Ren, Y.; Jiang, M. J. Phys. Chem. C 2008, 112, 3975–3981.
128. Zhao, Z.; Chen, S.; Shen, X.; Mahtab, F.; Yu, Y.; Lu, P.; Lam, J. W. Y.; Kwok, H. S.; Tang, B. Z. Chem. Commun. 2010, 46, 686–688.
129. Zeng, Q.; Li, Z.; Dong, Y.; Di, C.; Qin, A.; Hong, Y.; Ji, L.; Zhu, Z.; Jim, C. K. W.; Yu, G.; Li, Q.; Li, Z.; Liu, Y.; Qin, J.; Tang, B. Z. Chem. Commun. 2007, 70–72.
130. Li, Y.; Li, F.; Zhang, H.; Xie, Z.; Xie, W.; Xu, H.; Li, B.; Shen, F.; Ye, L.; Hanif, M.; Ma, D.; Ma, Y. Chem. Commun. 2007, 231–233.
131. Qian, L.; Tong, B.; Shen, J.; Shi, J.; Zhi, J.; Dong, Y.; Yang, F.; Dong, Y.; Lam, J. W. Y.; Liu, Y.; Tang, B. Z. J. Phys. Chem. B 2009, 113, 9098–9103.
132. Yang, Z.; Chi, Z.; Yu, T.; Zhang, X.; Chen, M.; Xu, B.; Liu, S.; Zhang, Y.; Xu, J. J. Mater. Chem. 2009, 19, 5541–5546.
133. Yuan, W. Z.; Lu, P.; Chen, S.; Lam, J. W. Y.; Wang, Z.; Liu, Y.; Kwok, H. S.; Ma, Y.; Tang, B. Z. Adv. Mater. 2010, 22, 1–5.
134. Xu, B.; Chi, Z.; Yang, Z.; Chen, J.; Deng, S.; Li, H.; Li, X.; Zhang, Y.; Xu, N.; Xu, J. J. Mater. Chem. 2010, 20, 4135–4141.
135. Zhao, Z.; Chen, S.; Lam, J. W. Y.; Jim, C. K. W.; Chan, C. Y. K.; Wang, Z.; Lu, P.; Deng, C.; Kwok, H. S.; Ma, Y.; Tang, B. Z. J. Phys. Chem. C 2010, 114, 7963–7972.
136. Zhao, Z.; Chen, S.; Lam, J. W. Y.; Lu, P.; Zhong, Y.; Wong, K. S.; Kwok, H. S.; Tang, B. Z. Chem. Commun. 2010, 46, 2221–2223.
137. Wang, W.; Lin, T.; Wang, M.; Liu, T. X.; Ren, L.; Chen, D.; Huang, S. J. Phys. Chem. B 2010, 114, 5983–5988.
138. Kokado, K.; Chujo, Y. Macromolecules 2009, 42, 1418–1420.
139. Qin, A.; Jim, C. K. W.; Tang, Y.; Lam, J. W. Y.; Liu, J.; Mahtab, F.; Gao, P.; Tang, B. Z. J. Phys. Chem. B 2008, 112, 9281–9288.
140. Pucci, A. ; Rausa, R.; Ciardelli, F. Macromol. Chem. Phys. 2008, 209, 900–906.
141. Li, Y.; Vamvounis, G.; Holdcroft, S. Macromolecules 2002, 35, 6900–6906.
142. Liu, J.; Lam, J. W. Y.; Tang, B. Z. J. Inorg. Orangomet. Polym. 2009, 19, 249–285.
143. Lai, C. T.; Hong, J. L. J. Phys. Chem. C 2009, 113, 18578–18583.
144. Liu, J.; Zhong, Y.; Lam, J. W. Y.; Lu, P.; Hong, Y.; Yu, Y.; Yue, Y.; Faisal, M.; Sung, H. H. Y.; Williams, I. D.; Wong, K. S.; Tang, B. Z. Macromolecules 2010, 43, 4921–4936.
145. Qin, A.; Lam, J. W. Y.; Tang, L.; Jim, C. K. W.; Zhao, H.; Sun, J.; Tang, B. Z. Macromolecules 2009, 42, 1421–1424.
146. Chou, C. A. ; Chien, R. H. ; Lai, C. T. ; Hong, J. L. Chem. Phys. Lett. 2010, 501, 80–86.
147. Chien, R. H.; Lai, C. T.; Hong, J. L. J. Phys. Chem. C 2011, 115, 5958–5965.
148. Liu, Y.; Tao, X.; Wang, F.; Shi, J.; Sun, J.; Yu, W.; Ren, Y.; Zou, D.; Jiang, M. J. Phys. Chem. C 2007, 111, 6544–6549.
149. Xue, P.; Lu, R.; Chen, G.; Zhang, Y.; Nomoto, H.; Takafuji, M.; Ihara H. Chem. Eur. J. 2007, 13, 8231–8239.
150. Chen, P.; Lu, R.; Xue, P.; Xu, T.; Chen, G.; Zhao, Y. Langmuir 2009, 25, 8395–8399.
151. Camerel, F.; Bonardi, L.; Schmutz, M.; Ziessel, R. J. Am. Chem. Soc. 2006, 128, 4548–4549.
152. Zhang, P.; Wang, H.; Liu, H.; Li, M. Langmuir 2010, 26, 10183–10190.
153. Zhou, T.; Li, F.; Fan, Y.; Song, W.; Mu, X.; Zhang, H.; Wang, Y. Chem. Commun. 2009, 3199–3201.
154. Fang, H.H.; Chen, Q.D.; Yang, J.; Xia, H.; Gao, B. R.; Feng, J.; Ma, Y. G.; Sun, H. B. J. Phys. Chem. C 2010, 114, 11958–11961.
155. Yang, Z.; Chi, Z.; Xu, B.; Li, H.; Zhang, X.; Li, X.; Liu, S.; Zhang, Y.; Xu, J. J. Mater. Chem. 2010, 20, 7352–7359.
156. Lamère, J.F.; Saffon, N.; Santos, I.D.; Fery-Forgues, S. Langmuir 2010, 26, 10210–10217.
157. Li, H.; Chi, Z.; Xu, B.; Zhang, X.; Yang, Z.; Li, X.; Liu, S.; Zhang, Y.; Xu, J. J. Mater. Chem. 2010, 20, 6103–6110.
158. Brandsma, L.; Vasilevsky, S. F.; Verkruijsse, H. D. Application of Transition Metal Catalysts in Organic Synthesis, corrected ed.; Springer: Berlin, 1999; p 5.
159. Yang, R.; Tian, R.; Hou, Q.; Yang, W.; Cao, Y. Macromolecules 2003, 36, 7453–7460.
160. Xu, B.; He, J.; Dong, Y.; Chen, F.; Yu, W.; Tian, W. Chem. Commun. 2011, 47, 6602–6604.
161. Salini, P. S.; Thomas, A. P.; Sabarinathan, R.; Ramakrishnan, S.; Sreedevi, K. C. G.; Reddy, M. L. P.; Srinivasan, A. Chem. Eur. J. 2011, 17, 6598 – 6601.
162. Upamali, K. A. N.; Estrada, L. A.; De, P. K.; Cai, X.; Krause, J. A.; Neckers, D. C. Langmuir 2011, 27, 1573–1580.
163. Zhang, X.; Chi, Z.; Zhang, J.; Li, H.; Xu, B.; Li, X.; Liu, S.; Zhang, Y.; Xu, J. J. Phys. Chem. B 2011, 115, 7606–7611.
164. Li, H.; Chi, Z.; Xu, B.; Zhang, X.; Li, X.; Liu, S.; Zhang, Y.; Xu, J. J. Mater. Chem. 2011, 21, 3760–3767.
165. Chien, R. H.; Lai, C. T.; Hong, J. L. J. Phys. Chem. C 2011, 115, 12538–12366.
166. Hu, Y.; Motzer, H. R.; Etxeberria, A. M.; Fernandez-Berridi, M. J.; Iruin, J. J.; Painter, P. C.; Coleman, M. M. Macromol. Chem. Phys. 2000, 201, 705–714.
167. Birks, J. B. Photophysics of Aromatic Molecules: Wiley: London, 1970.
168. Thomas III, S.W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339-1386.
169. Belletête, M. ; Bouchard, J. ; Leclerc, M. ; Durocher, G. Macromolecules 2005, 38, 880-887.
170. Chen, C. T. Chem. Mater. 2004, 16, 4389-4400.
171. Grell, M.; Bradley, D. D. C.; Ungar, G, Hill, J.; Whitehead, K. S. Macromolecules 1999, 32, 5810-5817.
172. Jakubiak, R.; Collison, C. J.; Wan, W. C.; Rothberg, L. J. Phys. Chem. A 1999, 103, 2394-2398.
173. Lemmer, U.; Heun, S.; Mahrt, R. F.; Scherf, U.; Hopmeier, M.; Siegner, U.; Gobel, E. O.; Müllen, K.; Bassler, H. Chem. Phys. Lett. 1995, 240, 373-378.
174. Wang, M.; Zhang, D.; Zhang, G.; Zhu, D. Chem. Phys. Lett. 2009, 475, 64-67.
175. Imai, Y.; Maldar, N. N.; Kakimoto, M. J. Polym. Sci. Polym. Chem. Ed. 1984, 22, 2189-2196.
176. Su, F. K.; Hong, J. L.; Lin, L. L. Synth. Met. 2004, 142, 63-69.
177. Yang, C. H.; Lin, L. L.; Hong, J. L. Polym. Int. 2005, 54, 679-685.
178. Tang, B. Z.; Xu, H. Macromolecules 1999, 32, 2569–2576.
179. Sun, Q.; Lam, J. W. Y.; Xu, K.; Xu, H.; Cha, J. A. P.; Wong, P. C. L.; Wen, G.; Zhang, X.; Jing, X.; Wang, F.; Tang, B. Z. Chem. Mater. 2000, 12, 2617–2624.
180. Yanari, S. S.; Bovey, F. A.; Lumry, R. Nature 1963, 200, 242–244.
181. Hirayama, F. J. Chem. Phys. 1965, 42, 3163–3171.
182. Manning. G. S. J. Phys. Chem. 1984, 88, 6654–6661.
183. Hao, M. H.; Harvey, S. C. Macromolecules 1992, 25, 2200–2208.
184. Nordmeier, E. Macromol. Chem. Phys. 1995, 196, 1321–1374.
185. Ruthard, C.; Maskos, M.; Kolb, U.; Gröhn, F. Macromolecules 2009, 42, 830–840.
186. Egawa, Y.; Hayashida, R.; Anzai, J. Langmuir 2007, 23, 13146–13150.
187. Kubát, P.; Lang, K.; Janda, P.; Anzenbacher, P. Langmuir 2005, 21, 9714–9720.
188. Lauceri, R.; Campagna, T.; Raudino, A.; Purello, R. Inorg. Chim. Acta. 2001, 317, 282–289.
189. Van Patten, P. G.; Shreve, A. P.; Donohoe, R. J. J. Phys. Chem. B 2000, 104, 5986–5992.
190. Moreno-Villoslada, I.; Jofré, M.; Miranda, V.; González, R.; Sotelo, T.; Hess, S.; Rivas, B. L.; J. Phys. Chem. B 2006, 110, 11809–11812.
191. Moreno-Villoslada, I.; Fuenzalida, J. P.; Tripailaf, G.; Araya-Hermosilla, R.; Pizarro, G. C.; Marambio, O. G.; Nishide, H. J. Phys. Chem. B 2010, 114, 11983–11992.
192. Soedjak, H. S. Anal. Chem. 1994, 66, 4514–4518.
193. Moreno-Villoslada, I.; Torres-Gallegos, C.; Araya-Hermosilla, R.; Fuenzalida, J. P.; Marambio, O. G.; Pizarro, G. C.; Flores, M. E.; Murakami, T.; Nishide, H. Mol. Cryst. Liq. Cryst. 2010, 522, 136–147.
194. Moreno-Villoslada, I.; Torres-Gallegos, C.; Araya-Hermosilla, R.; Nishide, H. J. Phys. Chem. B 2010, 114, 4151–4158.
195. Moreno-Villoslada, I.; Torres, C.; González, F.; Shibue, T.; Nishide, H. Macromol. Chem. Phys. 2009, 210, 1167–1175.
196. Mikroyannidis, J. A.; Spiliopoulos, I. K.; Kulkarni, A. P.; Jenekhe, S. A. Symth. Met. 2004, 142, 113–120.
197. Bazuin, C. G.; Tork, A. Macromolecules 1995, 28, 8877–8880.
198. Tsiourvas, D.; Paleos, C. M.; Skoulios, A. Macromolecules 1999, 32, 8059–8065.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code