Responsive image
博碩士論文 etd-0905111-150651 詳細資訊
Title page for etd-0905111-150651
論文名稱
Title
運用面型微加工技術開發具串聯式陣列結構之矽基微型熱電發電元件
Development of a Silicon-based Suspending Micro-thermoelectric Generator with Series Array Structure Using Surface Micromachining Technology
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-30
繳交日期
Date of Submission
2011-09-05
關鍵字
Keywords
串聯陣列結構、橋式結構、ANSYS、微型熱電發電元件、面型微加工技術
series-array, surface micromachining technology, micro thermal electric generator, bridge microstructure, ANSYS
統計
Statistics
本論文已被瀏覽 5660 次,被下載 0
The thesis/dissertation has been browsed 5660 times, has been downloaded 0 times.
中文摘要
本論文運用微機電系統技術研發一種具橋式串聯陣列結構之微型熱電發電元件(μ-TEG),利用每平方公分中串聯數以萬對之微型熱電偶將μ-TEG元件冷熱兩端之熱溫差轉換成可用之電能輸出,以應用於行動通訊等產品之充電。
依據結構的形式,傳統的μ-TEG可分為垂直式結構與水平式結構兩種。垂直式結構之μ-TEG,其熱流是完全經由熱電偶傳遞,可減少流經基板之損失,故熱電轉換效率較高;缺點是必須增加熱電偶之高度達100微米以上的程度,增加製程的困難度與成本。而水平式結構之熱電偶其高度只需數微米即可,製程較容易且成本較低;其缺點是熱流會流經基板,造成能量之損失,進而降低元件之發電效率,此缺點可經由橋式結構設計改善之,讓熱流直接經由懸浮之橋式熱電偶結構作傳遞,避免基板的損失。因此,本論文將利用面型微加工技術於矽基板上製作出數以萬對具水平式及懸浮式熱電偶結構之新型多晶矽μ-TEG,其製程步驟一共包含七次薄膜沉積與五次黃光微影/蝕刻製程。
本論文所開發之新型多晶矽μ-TEG在基板定溫加熱下(共有九種溫度),經由高放大倍率熱像儀之量測顯示,元件之懸浮結構(冷端)與基板(熱端)之最大溫差可達1.29℃;另外,利用多功能電錶量測出元件每平方公分之最大輸出電壓為4.47V/cm2,最大輸出功率為601.4 nW/cm2。九種基板溫度下所量得的不同μ-TEG輸出電壓與熱分佈會與有限元素軟體ANSYS之模擬結果進行比較與分析;三種不同之熱電偶懸浮結構長度對元件熱電特性之影響,於本研究中亦有所探討。
Abstract
This thesis aimed to develop a novel micro thermal electric generator (μ-TEG) with a series-array bridge microstructure utilizing microelectromechanical systems (MEMS) technology. By integrating the tens of thousands of micro-thermocouple in a centimeter square area, the temperature difference between the hot plane and cold plane of the presented μ-TEG can be converted into a useful electrical power. The thermoelectrically transferred output electrical power is suitable for recharging various mobile communication products.
There are two main configurations of the conventional μ-TEGs have been proposed, including the vertical and lateral structure types. The heat flow of the vertical-type μ-TEG can be directly transferred by the thermocouples and hence the energy loss through the substrate can be efficiently reduced and the thermoelectrical conversion efficiency is usually higher than vertical-type μ-TEG. However, to obtain a useful electrical power output, the height of the vertical-type μ-TEG usually more than 100 micrometers and this will increase the production difficulty and fabrication cost. In contrast, the height of the lateral-type μ-TEG is only about several micrometers and hence the production difficulty and fabrication cost are lower than vertical-type μ-TEG. The non-neglect energy loss through the substrate of lateral-type μ-TEG will constrain the efficiency of electrical power generation. Using the surface micromachining technology, tens of thousands of suspending micro polysilicon thermocouple are integrated and serially connected to increase the efficiency of electrical power generation and reduce the substrate energy loss. The main fabrication processes adopted in this research are including seven thin-film deposition processes and five photolithography processes.
The implemented Poly-Si based μ-TEG demonstrates a maximum temperature difference of 1.29℃ between the hot plane and cold plane (under nine different substrate temperatures), a maximum output voltage of 4.47 V/cm2 and a maximum output power of 601.4 nW/cm2. The comparison and analysis of experimental and simulation (ANSYS) results under the nine different substrate temperatures are investigated and the influence of length of suspending micro thermocouples is also discussed in this work.
目次 Table of Contents
摘要.................................................................................................................................I
Abstract..........................................................................................................................II
致謝..............................................................................................................................IV
目錄...............................................................................................................................V
圖目錄........................................................................................................................VII
表目錄...........................................................................................................................X
第一章 緒論............................................................................................................1
1-1 前言.............................................................................................................1
1-2 文獻回顧.....................................................................................................2
1-3 研究動機.....................................................................................................5
1-4 論文架構.....................................................................................................6
第二章 微型熱電產生器之工作原理與結構設計................................................7
2-1 熱電偶.........................................................................................................7
2-2 Seebeck Effect.............................................................................................9
2-3 熱電轉換特性介紹...................................................................................11
2-4 μ-TEG元件之結構設計….......................................................................15
2-4-1 結構分類...........................................................................................17
2-4-2 水平式之橋式懸浮結構...................................................................20
第三章 具串聯式陣列結構μ-TEG元件之設計與製作......................................22
3-1 製作流程與光罩佈局設計.......................................................................23
3-2 製作方法與實驗參數...............................................................................26
3-3 量測設備介紹...........................................................................................35
第四章 量測結果與討論......................................................................................37
4-1 具串聯式陣列結構之μ-TEG元件結構分析..........................................37
4-2 具串聯式陣列結構之μ-TEG元件熱像分析..........................................38
4-3 具串聯式陣列結構之μ-TEG元件熱電轉換特性分析..........................40
4-4 開發μ-TEG元件過程中所遇到之問題與解決方式..............................50
第五章 結論與未來展望........................................................................................55
5-1 結論...........................................................................................................55
5-2 未來展望...................................................................................................57
參考文獻......................................................................................................................58
附錄..............................................................................................................................60
參考文獻 References
[1]E. O. Torres and G. A. Rincón-Mora, “Long-Lasting, Self-Sustaining, and Energy-Harvesting System-in-Package (SIP) Wireless Micro-Sensor Solution,” International Conference on Energy, Environment and Disasters (INCEED2005), Charlotte, North Carolina, USA, July 24-30 2005.
[2]劉智生.洪儒生, ”太陽能電池的高效率化” 科學發展。
[3]P. Spies, M. Pollak, G. Rohmer, “Power Management for Energy Harvesting Applications,” Proceedings, 1st Annual nanoPower Forum (nPF), pp. 6–11, 2007.
[4]D. M. Rowe, “Thermoelectric handbook:macro to nano,” CRC Press, 2006.
[5]L. W. da Silva and M. Kaviany, “Fabrication and Measured Performance of a First-Generation Microthermoelectric Cooler,” J. Microelectromech. Syst., 14, 1110-1117,2005.
[6]M. Strasser, R. Aigner, C. Lauterbach, T. F.Sturm, M. Franosch and G. Wachutka, “Micromachined CMOS thermoelectric generators as on-chip power supply,” Sensors and Actuators A: Physical, vol. 114, pp. 362-370, September 2004.
[7]T. Huesgen, P. Woias and N. Kockmann, “Design and fabrication of MEMS thermoelectric generators with high temperature efficiency,” Sensors and Actuators A: Physical, vol.145-146, no. 1-2, pp. 423-429, July 2008.
[8]S. M. Yang, T. Lee and C. A. Jeng, “Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS process,” Sensors and Actuators A: Physical, vol. 153, pp. 244-250, August 2009.
[9]http://www.tf.uni-kiel.de/matwis/amat/elmat_en/makeindex.html
” Elcectronic Materials”
[10]A. W. Culp, “Principles of Energy Conversion,” McGraw-Hill, New York, 1991.
[11]M. Strasser, R. Aigner, and G. Wachutka, “Analysis of a CMOS low-power thermoelectric generator,” in: Pro. Eurosensors XIV, 2000, pp. 17–20.
[12]W. Glatz, S. Muntwyler, and C. Hierold, “Optimization and Fabrication of Thick Flexible Polymer based Microthermoelectric Generator,” Sensor and Actuators A: Physical, 132(2006) 337-345.
[13]G. J. Snyder, J. R. Lim, C. K. Huang, J. P. Fleurial, “Thermoelectric microdevice fabricated by a MEMS-like electrochemical process,” Nature Materials 2, 258-531(2003).
[14]M. Strasser, R. Aigner, M. Franosch, and G. Wachutka, “Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining,” Sensor and Actuators A: Physical, pp. 535–542, Apr. 2002.
[15]W. Glatz, E. Schwyter, L. Durrer, and C. Hierold, “Bi2Te3-Based Flexible Micro Thermoelectric Generator With Optimized Design,” J. Microelectromech. Syst., vol.18, no.3, June 2009.
[16]J. Xie, C. Lee, and H. Feng, “Design, Fabrication, and Characterization of CMOS MEMS-Based Thermoelectric Power Generators,” J. Microelectromech. Syst., vol.19, no.2, April 2010.
[17]G. M. Chen, I. Y. Huang, L. Y. Ma, and T. E. Wu, “Development of a Novel Transparent Micro-thermoelectric Generator for Solar Energy Conversion Utilizing Surface Micromachining Technology,” IEEE NEMS 2011, Kaohsiung, Taiwan.
[18]I. Y. Huang, J. C. Lin, K. D. She, M. C. Li, J. H. Chen, J. S. Kuo, ”Development of low-cost micro thermoelectric coolers utilizing MEMS technology,” Sensors and Actuators A: Physical, vol. 148, pp. 176-185, Nov. 2008.
[19]林直慶,微機電式熱電效應致冷器之設計與製作,清華大學電子工程研究所碩士論文,2002。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.212.145
論文開放下載的時間是 校外不公開

Your IP address is 3.144.212.145
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code