Responsive image
博碩士論文 etd-0905111-174611 詳細資訊
Title page for etd-0905111-174611
論文名稱
Title
用以基因表現圖譜之高明確性文獻探勘方法於尋找疾病、基因與藥物之間的隱藏關係
High Specificity Literature Mining Method Based on Microarray Expression Profile for Discovering Hidden Connections among Diseases, Genes, and Drugs
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-21
繳交日期
Date of Submission
2011-09-05
關鍵字
Keywords
隱藏關係、文獻探勘、特徵選取、基因演算法、基因表現圖譜
genetic algorithm, feature selection, Hidden relationship, literature mining, gene expression profile
統計
Statistics
本論文已被瀏覽 5738 次,被下載 641
The thesis/dissertation has been browsed 5738 times, has been downloaded 641 times.
中文摘要
近年來,隨著微陣列技術快速的發展且廣泛應用,大量的生物醫學方面的文獻被發表並提供了大量有用的資訊。但是因為資訊量過大,而且作者們不是只針對疾病與基因之間的關係來做探討,亦或只觀察藥品影響基因表現值的變化,卻少將兩部分做結合來觀察藉此獲得新的關連性。因此許多藥品、疾病與基因之間的關連性被掩蓋\\而仍待被發掘。為了解決這樣的問題,許多的方法被提出,但是大部分的方法不是需要人的介入,就是需要額外的實驗去驗證找出結果。因此本論文的主要目標就是在於找出藏在於疾病與基因,以及相同基因與藥品之間所形成之隱藏連結關係。而首要條件是找出對於疾病有意義的基因。
當基因在對於觀察組(病患)比起對照組(正常人)有很明顯的特徵,藉此可以用以區別有疾病組跟正常組。為了將有疾病組跟正常組分類,許多的論文被發表來解決這樣的問題,但是大部分的方法在微陣列的特徵值的數目增加時,就變得非常沒有效率。為了提升分類的正確率以及加速現有分類演算法之速度,我們提出了微陣列特徵削減演算法(MARS),來挑選出有鑑別度的基因。
實驗結果顯示,比其他的特徵選取結合多類別支援向量機的方法(MCSVM),MARS結合相同MCSVM的方法的效能表現更為突出。而在比較整體分類效果的實驗中,MARS結合MCSVM的表現比現存論文的實驗結果更好。而且,在急性淋巴性白血病與急性骨髓性白血病(AML-ALL)資料組中,我們找出的22個基因中有19個在文獻中與AML與ALL疾病有關,3個基因是仍待文獻確定。因此更可以證明我們的方法不僅可以大量的削減不必要的特徵,更可以提高分類的正確性,而且所找的基因是跟疾病有重大相關性。
為了改善MARS選取臨界值的方式,我們提出一個新的疾病導向特徵選取演算法(DOFA)來找出對於疾病有關的基因。DOFA 利用基因演算法(genetic algorithm; GA)在選取基因的過程中自動的去選擇出有關的基因,再透過支援向量機與K最近鄰居法(K-nearest neighbor; KNN)來當分類器。實驗結果顯示針對於急性淋巴性白血病與急性骨髓性白血病資料組與 結腸癌資料組,DOFA分別找出了21個基因與25個基因。而其中21個基因中有20個跟AML與ALL疾病有直接相關性或者是跟癌症有相關性,1個基因是仍待文獻確定;而25個基因中有20個跟結腸癌有直接相關性或者是跟癌症有相關性,5個基因是仍待文獻確定。在特徵選取的方法比較實驗中,DOFA比起其他方法有更顯著的效果。在與其他不同的21個方法透過交叉驗證方法中的留一驗證(leave-one-out cross-validation; LOOCV)的方式進行實驗,DOFA的效能比起其他方式有更好的效果。再與其他5種不同的分類方法比較下,透過一對一(50%訓練,50%測試)的實驗方式的比較下,DOFA可以獲得比其他的方法更高的鑑別度。
在獲得對於疾病有意義的基因群之後,我們可以更進一步的透過這些基因去找出隱藏的連結。我們提出一個高明確度的基於微陣列基因表現資料之文獻探勘的方法用以找尋藏於疾病、藥品與基因之間的隱藏關係。這個方法能自動的從疾病或者藥品相關的微陣列資料中去選擇有相關的基因群,並且利用這些基因的名字與別稱去找出來相關的摘要集合。在獲得這些摘要集合之後,我們的所提的方法更進一步採用一個別稱拓展演算法(Alias Expansion Scheme)與權重評價方程式(Weight Function),來將所收集到的摘要群進一步篩選掉不相關的摘要,並且更進一步地找出相關隱藏的關係。我們設計了三套場景來驗證我們所提出的演算法。在第一個場景之中的兩個實驗,我們分別找到15個以及11個隱藏關係。在第二個場景之中的兩個實驗,我們分別找到35個以及24個隱藏關係。而在第三個場景之中,我們找到9個隱藏關係。我們將第三個劇本與知名的軟體CoPub做比較,而我們所找到的隱藏關係並不存在於CoPub所找到的隱藏關係之中。因此可以證明我們的方法可以找出另外的隱藏關係。而透過ROC曲線的方式更能顯示出我們的方法不僅可以找出隱藏的關係,而且具有高明確性。
最後簡單地做個總結,透過MARS,我們可以在微陣列表現資料中找出與疾病高度相關的基因群。再進一步地用DOFA,我們加強了MARS選取基因的能力。最後我們提出一個高明確度的基於微陣列基因表現資料之文獻探勘的方法,結合了DOFA選取基因的能力,更進一步的透過這些基因去找出疾病與藥品間隱藏的連結。實驗結果證明,我們的方法不但可以找出隱藏於藥品與疾病之間的關係,更具有高明確性。
Abstract
In recent years, with the microarray technique widely adopted, a large amount of biomedical literatures are published to provide a lot of useful information. However, some relationships among disease, genes and drug are still to be explored, since the authors only focus on part of the significant genes to the disease or the significant genes to the drug but not connect them to obtain new relationships. There are several methods proposed for finding out the hidden relationships, however many of them requires manual involvements. The main objective of this dissertation is to discover the hidden connections between human diseases and genes and the connections between drugs and the same genes. In order achieve this goal, the intermediate nodes (signification genes) must be found first. When a gene has more significant difference in observed group (abnormal patients) than in control group (normal persons), this gene is called significant genes to the disease. These signification genes often play a crucial role in cancer diagnosis and treatment. Via classifying the microarray gene expression data to find these significant genes, doctors can obtain the feasible and appropriate information for treatments that can give to the patients according to their cancer symptoms. A variety of existing classifiers have been proposed for this problem. However, most of them often work inefficiently when attributes grow up over thousands. To further improve the accuracy and the speed of the existing classifiers, a novel microarray attribute reduction scheme (MARS) is proposed for selecting significant genes to the disease.
Experimental results demonstrate that combining the proposed scheme with multiclass support vector machine (MCSVM) obtains better performance than other different gene selection methods with the same MCSVM. In addition, the proposed scheme with MCSVM performs better than the results listed in the existing literature.. Furthermore, 19 of 22 genes selected by the proposed scheme in acute lymphoblastic leukemia and acute myeloid leukemia (AML-ALL) dataset are related to the AML and ALL diseases that have been reported in the literatures. Thus the proposed scheme not only can significantly reduce large amount of attributes (genes) for gene expression classification problem, but also increase the classification accuracy.
MARS finds related gene set according to a threshold determined by using receiver operating characteristic (ROC) curve. However, it requires repeating the experiment many times to determine the best threshold. Hence, we propose a novel disease-oriented feature selection algorithm (DOFA) to improve MARS. DOFA uses the Genetic Algorithm (GA) in the selection method for automatic picking up the related genes and Support Vector Machine (SVM) and K-nearest-neighborhood (KNN) as the classifier. DOFA is tested on picking up related genes for AML-ALL and Colon datasets. For AML-ALL and Colon datasets, it selects 21 genes and 25 genes, respectively. Based on the literatures, it shows that 20 of 21 genes are related to the disease or cancers related for AML-ALL dataset and one of these genes is still uncertain. And 20 of 25 genes are directly related to the disease colon cancer or cancers related and 5 of these genes are still uncertain. Three more experiments are conducted to verify the discriminability of the genes selected by DOFA. Experimental results all indicate that DOFA obtains better performance than other competing methods. Thus DOFA not only can select the genes related to the diseases, but also increase the classification accuracy.
After obtaining the significant gene group, we can further use these genes to obtain the hidden connections. We propose a high specificity literature mining method based on microarray expression profile for discovering hidden connections among disease, drug, and genes. The proposed method can automatically select related genes from the disease or drug microarray expression profiles, and use the disease names or the drug names and gene names or aliases of the selected genes to obtain the related abstract collections. An alias expansion scheme and a weight function are used to eliminate the unrelated literatures. We perform three scenarios to verify the proposed method. Experimental results show that using the proposed method can obtain the hidden connections among diseases, genes and drugs. The (ROC) curve shows that the proposed method can not only find the hidden connections between diseases and drugs but also have high specificity.
Concluding this dissertation, our goal is to discover the hidden connections between the diseases and the drugs. In order to achieve this goal, we first proposed MARS to select the significant genes to the diseases. And then, we proposed DOFA to improve the ability of MARS. We proposed a high specificity literature mining method based on microarray expression profile for discovering the hidden connections among diseases, genes, and drugs. The proposed method combines the power of searching significant genes to the disease of DOFA to further obtain the hidden connections. Experimental results show that the proposed method not only can obtain the hidden connections among diseases, genes, and drugs, but also has high specificity.
目次 Table of Contents
1. Introduction 1
1.1 Motivations and objectives 1
1.2 Overview of the proposed literature mining method 2
1.3 Organization of this Dissertation 5
2. MARS: a microarray attribute reduction scheme for microarray
cancer classification problem 6
2.1 Background and Related Works 6
2.2 Microarray Attribute Reduction Scheme 12
2.2.1 Overview of MARS 12
2.2.2 Details of the Microarray Attribute Reduction Scheme 16
2.2.3 Multiclass Support Vector Machine 18
2.2.4 Receiver Operating Characteristic Analysis 20
2.3 Experimental Results 21
2.3.1 Comparison of the Gene Selection Methods 22
2.3.2 Experiment of Threshold Selection 27
2.3.3 Performances Comparison of Different Algorithms 36
2.4 Discussion 39
2.5 Summary 41
3. DOFA: A novel disease oriented gene selection algorithm 42
3.1 Background and Related Works 42
3.2 Disease-Oriented Feature Selection Algorithm 47
3.2.1 Overview of DOFA 48
3.2.2 Normalization Process 50
3.2.3 Gene Selection Process 51
3.2.3.1 Gene Reduction Phase 52
3.2.3.2 Classification Pattern Learning Phase 54
3.2.4 Classification Process 59
3.2.5 Fusion and Verification Process 59
3.3 Experimental Results 60
3.3.1 Experiments of the Disease Oriented Feature Selection Results 60
3.3.2 Comparisons of the Classification Results 62
3.4 Discussion 67
3.5 Summary 69
4. The Proposed High Specificity Literature Mining Method 71
4.1 Background and Related Works 71
4.2 The Proposed Method 77
4.2.1 Microarray Expression Profile Database Construction 80
4.2.2 Microarray Expression profile Selection 81
4.2.3 Gene Selection 82
4.2.4 Combination of Two Gene Sets 84
4.2.5 Generating Queries Related To the Disease Name and Genes 84
4.2.6 Fetching Disease Oriented Gene-related Abstracts 85
4.2.7 Fetching Drug Oriented Gene-related Abstracts 87
4.2.8 Fusion Part 87
4.3 Experimental Results 88
4.3.1 Scenario 1 88
4.3.2 Scenario 2 96
4.3.3 Scenario 3 100
4.4 Discussion 106
4.5 Summary 112
5. Conclusions and Future Works 114
References 117
參考文獻 References
References
[1] Y. Saeys, I. Inza and P. Larranaga, "A review of feature selection techniques in bioinformatics," Bioinformatics, vol. 23, pp. 2507-2517, 2007.
[2] Jerome H. Friedman, "Flexible metric nearest neighbor classification," technical report, Department of Statistics, Stanford University, 1994.
[3] R. A. Fisher, " The use of multiple measurements in taxonomic problems," Annals of Human Genetics, vol. 7, pp. 179-188, 1936.
[4] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, pp. 273-297, 1995.
[5] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," Journal of Machine Learning Research, pp. 1157-1182, .
[6] J. Ye, T. Li, T. Xiong and R. Janardan, "Using uncorrelated discriminant analysis for tissue classification with gene expression data," Computational Biology and Bioinformatics, IEEE/ACM Transactions on, vol. 1, pp. 181-190, 2004.
[7] B. Yao and S. Li, "ANMM4CBR: a case-based reasoning method for gene expression data classification," Algorithms for Molecular Biology, vol. 5, pp. 14, 2010.
[8] C. Chang and C. Lin, "LIBSVM : a library for support vector machines," ACM Transactions on Intelligent Systems and Technology, vol. 2, pp. 27:1--27:27, 2011.
[9] G. Yeo and T. Poggio, "Multiclass classification of SRBCTs," technical report AIM-2001-018, CBCL-206, 08-25. 2001.
[10] A. I. Su, J. B. Welsh, L. M. Sapinoso, S. G. Kern, P. Dimitrov, H. Lapp, P. G. Schultz, S. M. Powell, C. A. Moskaluk, H. F. Frierson and G. M. Hampton, "Molecular classification of human carcinomas by use of gene expression signatures," Cancer Research, vol. 61, pp. 7388-7393, 2001.
[11] S. Ramaswamy, P. Tamayo, R. Rifkin, S. Mukherjee, C. Yeang, M. Angelo, C. Ladd, M. Reich, E. Latulippe, J. P. Mesirov, T. Poggio, W. Gerald, M. Loda, E. S. Lander and T. R. Golub, "Multiclass cancer diagnosis using tumor gene expression signatures," Proceedings of the National Academy of Sciences, vol. 98, pp. 15149-15154, 2001.
[12] C. Yeang, S. Ramaswamy, P. Tamayo, S. Mukherjee, R. M. Rifkin, M. Angelo, M. Reich, E. Lander, J. Mesirov and T. Golub, "Molecular classification of multiple tumor types," Bioinformatics, vol. 17, pp. S316-S322, 2001.
[13] Y. Lee and C. Lee, "Classification of multiple cancer types by multicategory support vector machines using gene expression data," Bioinformatics, vol. 19, pp. 1132-1139, 2003.
[14] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield and E. S. Lander, "Molecular classification of cancer: class discovery and class prediction by gene expression monitoring," Science, vol. 286, pp. 531-537, 1999.
[15] S. A. Armstrong, J. E. Staunton, L. B. Silverman, R. Pieters, M. L. den Boer, M. D. Minden, S. E. Sallan, E. S. Lander, T. R. Golub and S. J. Korsmeyer, "MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia," Nature Genetics, vol. 30, pp. 41-47, 2002.
[16] S. L. Pomeroy, P. Tamayo, M. Gaasenbeek, L. M. Sturla, M. Angelo, M. E. McLaughlin, J. Y. H. Kim, L. C. Goumnerova, P. M. Black, C. Lau, J. C. Allen, D. Zagzag, J. M. Olson, T. Curran, C. Wetmore, J. A. Biegel, T. Poggio, S. Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D. N. Louis, J. P. Mesirov, E. S. Lander and T. R. Golub, "Prediction of central nervous system embryonal tumour outcome based on gene expression," Nature, vol. 415, pp. 436-442, 2002.
[17] E. Petricoin III F., A. M. Ardekani, B. A. Hitt, P. J. Levine, V. A. Fusaro, S. M. Steinberg, G. B. Mills, C. Simone, D. A. Fishman, E. C. Kohn and L. A. Liotta, "Use of proteomic patterns in serum to identify ovarian cancer," The Lancet, vol. 359, pp. 572-577, 2002.
[18] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack and A. J. Levine, "Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays," Proceedings of the National Academy of Sciences, vol. 96, pp. 6745-6750, 1999.
[19] G. J. Gordon, R. V. Jensen, L. Hsiao, S. R. Gullans, J. E. Blumenstock, S. Ramaswamy, W. G. Richards, D. J. Sugarbaker and R. Bueno, "Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma," Cancer Research, vol. 62, pp. 4963-4967, 2002.
[20] D. Singh, P. G. Febbo, K. Ross, D. G. Jackson, J. Manola, C. Ladd, P. Tamayo, A. A. Renshaw, A. V. D'Amico, J. P. Richie, E. S. Lander, M. Loda, P. W. Kantoff, T. R. Golub and W. R. Sellers, "Gene expression correlates of clinical prostate cancer behavior," Cancer Cell, vol. 1, pp. 203-209, 2002.
[21] M. A. Shipp, K. N. Ross, P. Tamayo, A. P. Weng, J. L. Kutok, R. C. T. Aguiar, M. Gaasenbeek, M. Angelo, M. Reich, G. S. Pinkus, T. S. Ray, M. A. Koval, K. W. Last, A. Norton, T. A. Lister, J. Mesirov, D. S. Neuberg, E. S. Lander, J. C. Aster and T. R. Golub, "Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning," Nature Medicine, vol. 8, pp. 68-74, 2002.
[22] E. Yeoh, M. E. Ross, S. A. Shurtleff, W. K. Williams, D. Patel, R. Mahfouz, F. G. Behm, S. C. Raimondi, M. V. Relling, A. Patel, C. Cheng, D. Campana, D. Wilkins, X. Zhou, J. Li, H. Liu, C. Pui, W. E. Evans, C. Naeve, L. Wong and J. R. Downing, "Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling," Cancer Cell, vol. 1, pp. 133-143, 2002.
[23] W. Kruskal and A. Wallis, "Use of ranks in one-criterion variance analysis," Journal of the American Statistical Association, vol. 47, pp. 583-621, 1952.
[24] H. Xiong and X. Chen, "Kernel-based distance metric learning for microarray data classification," BMC Bioinformatics, vol. 7, pp. 299, 2006.
[25] W. Fiskus, Y. Wang, A. Sreekumar, K. M. Buckley, H. Shi, A. Jillella, C. Ustun, R. Rao, P. Fernandez, J. Chen, R. Balusu, S. Koul, P. Atadja, V. E. Marquez and K. N. Bhalla, "Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells," Blood, vol. 114, pp. 2733-2743, 2009.
[26] S. Lee, D. Lee, Y. Dou, J. Lee, B. Lee, E. Kwak, Y. Kong, S. Lee, R. G. Roeder and J. W. Lee, "Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases," Proceedings of the National Academy of Sciences, vol. 103, pp. 15392-15397, 2006.
[27] M. A. Sekeres, J. P. Maciejewski, H. P. Erba, M. Afable, R. Englehaupt, R. Sobecks, A. Advani, S. Seel, J. Chan and M. E. Kalaycio, "A Phase 2 study of combination therapy with arsenic trioxide and gemtuzumab ozogamicin in patients with myelodysplastic syndromes or secondary acute myeloid leukemia," Cancer, vol. 117, pp. 1253-1261, 2011.
[28] J. Hauer, C. Mullighan, E. Morillon, G. Wang, J. Bruneau, N. Brousse, M. Lelorc'h, S. Romana, A. Boudil, D. Tiedau, S. Kracker, F. D. Bushmann, A. Borkhardt, A. Fischer, S. Hacein-Bey-Abina and M. Cavazzana-Calvo, "Loss of p19Arf in a Rag1-/- B-cell precursor population initiates acute B-lymphoblastic leukemia," Blood, 2011.
[29] E. Biagi, M. Col, M. Migliavacca, M. Dell'Oro, D. Silvestri, A. Montanelli, G. Peri, A. Mantovani, A. Biondi and M.R Rossi, "PTX3 as a potential novel tool for the diagnosis and monitoring of pulmonary fungal infections in immuno-compromised pediatric patients," Journal of Pediatric hematology/oncology, vol. 30, pp. 881-885, 2008.
[30] M. Aivado, D. Spentzos, U. Germing, G. Alterovitz, X. Meng, F. Grall, A. A. N. Giagounidis, G. Klement, U. Steidl, H. H. Otu, A. Czibere, W. C. Prall, C. Iking-Konert, M. Shayne, M. F. Ramoni, N. Gattermann, R. Haas, C. S. Mitsiades, E. T. Fung and T. A. Libermann, "Serum proteome profiling detects myelodysplastic syndromes and identifies CXC chemokine ligands 4 and 7 as markers for advanced disease," Proceedings of the National Academy of Sciences, vol. 104, pp. 1307-1312, January 23, 2007.
[31] M. Chechlinska, J. Siwicki, M. Gos, M. Oczko-Wojciechowska, M. Jarzab, A. Pfeifer, B. Jarzab and J. Steffen, "Molecular signature of cell cycle exit induced in human T lymphoblasts by IL-2 withdrawal," BMC Genomics, vol. 10, pp. 261, 2009.
[32] J. J. Yang, D. Bhojwani, W. Yang, X. Cai, G. Stocco, K. Crews, J. Wang, D. Morrison, M. Devidas, S. P. Hunger, C. L. Willman, E. A. Raetz, C. Pui, W. E. Evans, M. V. Relling and W. L. Carroll, "Genome-wide copy number profiling reveals molecular evolution from diagnosis to relapse in childhood acute lymphoblastic leukemia," Blood, vol. 112, pp. 4178-4183, 2008.
[33] S. Wang, W. E. Durrant, J. Song, N. W. Spivey and X. Dong, "Arabidopsis BRCA2 and RAD51 proteins are specifically involved in defense gene transcription during plant immune responses," Proceedings of the National Academy of Sciences, 2010.
[34] F. Cavallo, A. Astolfi, M. Iezzi, F. Cordero, P. Lollini, G. Forni and R. Calogero, "An integrated approach of immunogenomics and bioinformatics to identify new Tumor Associated Antigens (TAA) for mammary cancer immunological prevention," BMC Bioinformatics, vol. 6, pp. S7, 2005.
[35] X. Chen, Y. Tong, W. Xu, J. Jin and W. Qian, "Expression of telomere binding factor 2 (TRF2) on leukemia cell lines and primary leukemia cells," Zhejiang Da Xue Xue Bao Yi Xue Ban, vol. 37, pp. 170-175, 2008.
[36] Y. Shimizu, H. Fujishiro, K. Matsumoto, D. Sumi, M. Satoh and S. Himeno, "Chronic exposure to arsenite induces S100A8 and S100A9 expression in rat RBL-2H3 mast cells," J. Toxicol. Sci., vol. 36, pp. 135-139, 2011.
[37] S. E. Gibson, H. Y. Dong, A. S. Advani and E. D. Hsi, "Expression of the B cell-associated transcription factors PAX5, OCT-2, and BOB.1 in acute myeloid leukemia: associations with B-cell antigen expression and myelomonocytic maturation," American Journal of Clinical Pathology, vol. 126, pp. 916-924, 2006.
[38] M. Ragusa, G. Avola, R. Angelica, D. Barbagallo, M. Guglielmino, L. Duro, A. Majorana, L. Statello, L. Salito, C. Consoli, M. Camuglia, C. Di Pietro, G. Milone and M. Purrello, "Expression profile and specific network features of the apoptotic machinery explain relapse of acute myeloid leukemia after chemotherapy," BMC Cancer, vol. 10, pp. 377, 2010.
[39] S. Ha, S. M. Shin, H. Namkoong, H. Lee, G. W. Cho, S. Y. Hur, T. E. Kim and J. W. Kim, "Cancer-associated expression of minichromosome maintenance 3 gene in several human cancers and its involvement in tumorigenesis," Clinical Cancer Research, vol. 10, pp. 8386-8395, 2004.
[40] L. Urbanelli, A. Magini, L. Ercolani, F. Trivelli, A. Polchi, B. Tancini and C. Emiliani, "Human lysosomal α-D-mannosidase regulation in promyelocytic leukemia cells," Bioscience Reports, doi:10.1042/BSR20110020, 2011.
[41] M. Eichenmuller, R. Bauer, D. Von Schweinitz, H. Hahn and R. Kappler, "Hedgehog-independent overexpression of transforming growth factor-beta1 in rhabdomyosarcoma of Patched1 mutant mice," International Journal of Oncology, vol. 31, pp. 405-412, 2007.
[42] A. Tyybakinoja, U. Saarinen-Pihkala, E. Elonen and S. Knuutila, "Amplified, lost, and fused genes in 11q23-25 amplicon in acute myeloid leukemia, an array-CGH study," Genes, Chromosomes and Cancer, vol. 45, pp. 257-264, 2006.
[43] Y. Midorikawa, S. Tsutsumi, H. Taniguchi, M. Ishii, Y. Kobune, T. Kodama, M. Makuuchi and H. Aburatani, "Identification of genes associated with dedifferentiation of hepatocellular carcinoma with expression profiling analysis," Cancer Science, vol. 93, pp. 636-643, 2002.
[44] L. B. Romdhane, H. Shili and B. el Ayeb, "P3m - possibilistic multi-step maxmin and merging algorithm with application to gene expression data mining," International Journal on Artificial Intelligence Tools, vol. 18, pp. 545-567, 2009.
[45] J. Hong and S. Cho, "The classification of cancer based on DNA microarray data that uses diverse ensemble genetic programming," Artificial Intelligence in Medicine, vol. 36, pp. 43-58, 1, 2006.
[46] Y. Chen and Y. Zhao, "A novel ensemble of classifiers for microarray data classification," Applied Soft Computing, vol. 8, pp. 1664-1669, 2008.
[47] L. Yu and H. Liu, "Redundancy based feature selection for microarray data," in Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 2004, pp. 737-742, 2004.
[48] Z. Wang, V. Palade and Y. Xu, "Neuro-fuzzy ensemble approach for microarray cancer gene expression data analysis," in Evolving Fuzzy Systems, 2006 International Symposium on, 2006, pp. 241-246, 2006.
[49] A. C. Tan, D. Q. Naiman, L. Xu, R. L. Winslow and D. Geman, "Simple decision rules for classifying human cancers from gene expression profiles," Bioinformatics, vol. 21, pp. 3896-3904, 2005.
[50] J. Wu, "MARS: A microarray attributes reduction scheme for microarray cancer classification problem," CIIS Lab Technique Report, 2010.
accessed at http://edith.cse.nsysu.edu.tw/wu/MARS.pdf.
[51] J. H. Holland, Adaptation in Natural and Artificial System. 1975.
[52] Y. Kwok and I. Ahmad, "Efficient scheduling of arbitrary task graphs to multiprocessors using a parallel genetic algorithm," Journal of Parallel and Distributed Computing, vol. 47, pp. 58-77, 1997.
[53] T. Okudaira, M. Hirashima, C. Ishikawa, S. Makishi, M. Tomita, T. Matsuda, H. Kawakami, N. Taira, K. Ohshiro, M. Masuda, N. Takasu and N. Mori, "A modified version of galectin-9 suppresses cell growth and induces apoptosis of human T-cell leukemia virus type I-infected T-cell lines," International Journal of Cancer, vol. 120, pp. 2251-2261, 2007.
[54] T. Endo, T. Imanishi, T. Gojobori and H. Inoko, "Evolutionary significance of intra-genome duplications on human chromosomes," Gene, vol. 205, pp. 19-27, 1997.
[55] D. S. Krause, T. R. Spitzer and C. P. Stowell, "The concentration of CD44 is increased in hematopoietic stem cell grafts of patients with acute myeloid leukemia, plasma cell myeloma, and non-Hodgkin lymphoma," Archives of Pathology & Laboratory Medicine, vol. 134, pp. 1033-1038, 2010.
[56] C. Muller-Tidow, H. Klein, A. Hascher, F. Isken, L. Tickenbrock, N. Thoennissen, S. Agrawal-Singh, P. Tschanter, C. Disselhoff, Y. Wang, A. Becker, C. Thiede, G. Ehninger, U. zur Stadt, S. Koschmieder, M. Seidl, F. U. Muller, W. Schmitz, P. Schlenke, M. McClelland, W. E. Berdel, M. Dugas and H. Serve, "Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia," Blood, 2010.
[57] W. Au, C. Man, A. Pang and Y. Kwong, "Acute lymphoblastic leukemia in a patient with fragile X syndrome: cytogenetic and molecular features," Haematologica, vol. 88, pp. ECR13, 2003.
[58] S. Savas and H. B. Younghusband, "dbCPCO: a database of genetic markers tested for their predictive and prognostic value in colorectal cancer," Human Mutation, vol. 31, pp. 901-907, 2010.
[59] Q. Wei, Y. Li, L. Chen, L. Zhang, X. He, X. Fu, K. Ying, J. Huang, Q. Chen, Y. Xie and Y. Mao, "Genes differentially expressed in responsive and refractory acute leukemia," Frontiers in Bioscience, vol. 11, pp. 977-982, 2006.
[60] D. M. Hickinson, G. B. Marshall, G. J. Beran, M. Varella-Garcia, E. A. Mills, M. C. South, A. M. Cassidy, K. L. Acheson, G. McWalter, R. M. McCormack, P. A. Bunn, T. French, A. Graham, B. R. Holloway, F. R. Hirsch and G. Speake, "Identification of biomarkers in human head and neck tumor cell lines that predict for in vitro sensitivity to Gefitinib," Clinical and Translational Science, vol. 2, pp. 183-192, 2009.
[61] D. Ghosh, "Human sulfatases: A structural perspective to catalysis," Cellular and Molecular Life Sciences, vol. 64, pp. 2013-2022, 2007.
[62] S. S. Nielsen, R. McKean-Cowdin, F. M. Farin, E. A. Holly, S. Preston-Martin and B. A. Mueller, "Childhood brain tumors, residential insecticide exposure, and pesticide metabolism genes," Environmental Health Perspectives, vol. 118, 2009.
[63] A. Mejia, S. Schulz, T. Hyslop, D. S. Weinberg and S. A. Waldman, "GUCY2C reverse transcriptase PCR to stage pN0 colorectal cancer patients," Expert Review of Molecular Diagnostics, vol. 9, pp. 777-785, 2009.
[64] R. G. Tuskan, S. Tsang, Z. Sun, J. Baer, E. Rozenblum, X. Wu, D. J. Munroe and K. M. Reilly, "Real-time PCR analysis of candidate imprinted genes on mouse chromosome 11 shows balanced expression from the maternal and paternal chromosomes and strain-specific variation in expression levels," Epigenetics, vol. 3, pp. 43-50, 2008.
[65] A. T. J. Wierenga, B. J. L. Eggen, W. Kruijer and E. Vellenga, "Proteolytic degradation of Smad4 in extracts of AML blasts," Leuk. Res., vol. 26, pp. 1105-1111, 12, 2002.
[66] N. Paz, E. Y. Levanon, N. Amariglio, A. B. Heimberger, Z. Ram, S. Constantini, Z. S. Barbash, K. Adamsky, M. Safran, A. Hirschberg, M. Krupsky, I. Ben-Dov, S. Cazacu, T. Mikkelsen, C. Brodie, E. Eisenberg and G. Rechavi, "Altered adenosine-to-inosine RNA editing in human cancer," Genome Research, vol. 17, pp. 1586-1595, 2007.
[67] K. Das, P. D. N. Lorena, L. K. Ng, D. Lim, L. Shen, W. Y. Siow, M. Teh, J. K. V. Reichardt and M. Salto-Tellez, "Differential expression of steroid 5α-reductase isozymes and association with disease severity and angiogenic genes predict their biological role in prostate cancer," Endocrine-Related Cancer, vol. 17, pp. 757-770, 2010.
[68] A. Bavelloni, I. Faenza, G. Cioffi, M. Piazzi, D. Parisi, I. Matic, N. M. Maraldi and L. Cocco, "Proteomic-based analysis of nuclear signaling: PLCβ1 affects the expression of the splicing factor SRp20 in Friend erythroleukemia cells," Proteomics, vol. 6, pp. 5725-5734, 2006.
[69] C. Hutter, A. Attarbaschi, S. Fischer, C. Meyer, M. Dworzak, M. Konig, R. Marschalek, G. Mann, O. A. Haas and E. R. Panzer-Grumayer, "Acute monocytic leukaemia originating from MLL-MLLT3-positive pre-B cells," British Journal of Haematology, vol. 150, pp. 621-623, 2010.
[70] J. Stephenson, B. Czepulkowski, W. Hirst and G. J. Mufti, "Deletion of the acetylcholinesterase locus at 7q22 associated with myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML)," Leukemia Research, vol. 20, pp. 235-241, 3, 1996.
[71] H. Shikata, T. Matumoto, H. Teraoka, M. Kaneko, M. Nakanishi and T. Yoshino, "Myeloid sarcoma in essential thrombocythemia that transformed into acute myeloid leukemia," International Journal of Hematology, vol. 89, pp. 214-217, 2009.
[72] V. Senyuk, S. Chakraborty, F. M. Mikhail, R. Zhao, Y. Chi and G. Nucifora, "The leukemia-associated transcription repressor AML1/MDS1/EVI1 requires CtBP to induce abnormal growth and differentiation of murine hematopoietic cells," Oncogene, vol. 21, pp. 3232-3240, 2002.
[73] C. R. Jimenez, J. C. Knol, G. A. Meijer and R. J. A. Fijneman, "Proteomics of colorectal cancer: Overview of discovery studies and identification of commonly identified cancer-associated proteins and candidate CRC serum markers," Journal of Proteomics, vol. 73, pp. 1873-1895, 2010.
[74] F. Le Naour, M. Andre, C. Greco, M. Billard, B. Sordat, J. Emile, F. Lanza, C. Boucheix and E. Rubinstein, "Profiling of the Tetraspanin Web of Human Colon Cancer Cells," Molecular & Cellular Proteomics, vol. 5, pp. 845-857, 2006.
[75] L. A. Carey, C. M. Perou, C. A. Livasy, L. G. Dressler, D. Cowan, K. Conway, G. Karaca, M. A. Troester, C. K. Tse, S. Edmiston, S. L. Deming, J. Geradts, M. C. U. Cheang, T. O. Nielsen, P. G. Moorman, H. S. Earp and R. C. Millikan, "Race, breast cancer subtypes, and survival in the Carolina breast cancer study," JAMA: The Journal of the American Medical Association, vol. 295, pp. 2492-2502, 2006.
[76] L. Yang, L. Zhang, Q. Wu and D. D. Boyd, "Unbiased Screening for Transcriptional Targets of ZKSCAN3 Identifies Integrin β4 and Vascular Endothelial Growth Factor as Downstream Targets," Journal of Biological Chemistry, vol. 283, pp. 35295-35304, 2008.
[77] X. Fu, H. Deng, L. Zhao, J. Li, Y. Zhou and Y. Zhang, "Distinct expression patterns of hedgehog ligands between cultured and primary colorectal cancers are associated with aberrant methylation of their promoters," Molecular and Cellular Biochemistry, vol. 337, pp. 185-192, 2010.
[78] Q. Pang, T. Prolla and R. Liskay, "Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations," Molecular and Cellular Biology, vol. 17, pp. 4465-4473, 1997.
[79] O. C. Trifan, R. M. Smith, B. D. Thompson and T. Hla, "Overexpression of cyclooxygenase-2 induces cell cycle arrest," Journal of Biological Chemistry, vol. 274, pp. 34141-34147, 1999.
[80] M. Lai and J. Xu, "Ribosomal proteins and colorectal cancer," Current Genomics, vol. 8, pp. 43-49, 2007.
[81] M. Serova, L. Astorgues-Xerri, I. Bieche, S. Albert, M. Vidaud, K. A. Benhadji, S. Emami, D. Vidaud, P. Hammel, N. Theou-Anton, C. Gespach, S. Faivre and E. Raymond, "Epithelial-to-mesenchymal transition and oncogenic Ras expression in resistance to the protein kinase Cβ inhibitor enzastaurin in colon cancer cells," Molecular Cancer Therapeutics, vol. 9, pp. 1308-1317, 2010.
[82] Y. Zhu, R. G. Stevens, A. E. Hoffman, L. M. FitzGerald, E. M. Kwon, E. A. Ostrander, S. Davis, T. Zheng and J. L. Stanford, "Testing the circadian gene hypothesis in prostate cancer: a population-based case-control study," Cancer Research, vol. 69, pp. 9315-9322, 2009.
[83] B. R. V. V. S. N. Kurada, L. C. Li, N. Mulherkar, M. Subramanian, K. V. Prasad and B. S. Prabhakar, "MADD, a Splice Variant of IG20, Is Indispensable for MAPK Activation and Protection against Apoptosis upon Tumor Necrosis Factor-α Treatment," Journal of Biological Chemistry, vol. 284, pp. 13533-13541, 2009.
[84] C. Hundhausen, C. Boesch-Saadatmandi, N. Matzner, F. Lang, R. Blank, S. Wolffram, W. Blaschek and G. Rimbach, "Ochratoxin a lowers mRNA levels of genes encoding for key proteins of liver cell metabolism," Cancer Genomics & Proteomics, vol. 5, pp. 319-332, 2008.
[85] E. P. Kopantzev, G. S. Monastyrskaya, T. V. Vinogradova, M. V. Zinovyeva, M. B. Kostina, O. B. Filyukova, A. G. Tonevitsky, G. T. Sukhikh and E. D. Sverdlov, "Differences in gene expression levels between early and later stages of human lung development are opposite to those between normal lung tissue and non-small lung cell carcinoma," Lung Cancer, vol. 62, pp. 23-34, 2008.
[86] N. M. H. Ravindranath and C. Shuler, "Cell-surface density of complement restriction factors (CD46, CD55, and CD59): oral squamous cell carcinoma versus other solid tumors," Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, vol. 103, pp. 231-239, 2007.
[87] D. M. Peffley, C. Sharma, P. Hentosh and R. D. Buechler, "Perillyl alcohol and genistein differentially regulate PKB/Akt and 4E-BP1 phosphorylation as well as eIF4E/eIF4G interactions in human tumor cells," Archives of Biochemistry and Biophysics, vol. 465, pp. 266-273, 2007.
[88] P. Ortega, A. Moran, T. Fernandez-Marcelo, C. De Juan, C. Frias, J. Lopez-Asenjo, A. Sanchez-Pernaute, A. Torres, E. Diaz-Rubio, P. Iniesta and M. Benito, "MMP-7 and SGCE as distinctive molecular factors in sporadic colorectal cancers from the mutator phenotype pathway," International Journal of Oncology, vol. 36, pp. 1209-1215, 2010.
[89] D. H. Kim, M. Muto, Y. Kuwahara, Y. Nakanishi, H. Watanabe, K. Aoyagi, K. Ogawa, T. Yoshida and H. Sasaki, "Array-based comparative genomic hybridization of circulating esophageal tumor cells," Oncology Reports, vol. 16, pp. 1053-1059, 2006.
[90] B. Korošec, D. Glavač, T. Rott and M. Ravnik-Glavač, "Alterations in the ATP2A2 gene in correlation with colon and lung cancer," Cancer Genetics and Cytogenetics, vol. 171, pp. 105-111, 2006.
[91] M. Slominska, A. Wahl, G. Wegrzyn and K. Skarstad, "Degradation of mutant initiator protein DnaA204 by proteases ClpP, ClpQ and Lon is prevented when DNA is SeqA-free," Biochemical Journal, pp. 867-871, 2003.
[92] M. N. Washington and N. L. Weigel, "1α,25-Dihydroxyvitamin D3 Inhibits Growth of VCaP Prostate Cancer Cells Despite Inducing the Growth-Promoting TMPRSS2:ERG Gene Fusion," Endocrinology, vol. 151, pp. 1409-1417, 2010.
[93] D. R. Swanson, "Undiscovered public knowledge," The Library Quarterly, vol. 56, pp. 103-118, 1986.
[94] D. R. Swanson, "On the fragmentation of knowledge, the connection explosion, and assembling other people's ideas," Bulletin of the American Society for Information Science and Technology, vol. 27, pp. 12-14, 2001.
[95] J. Lamb, "The Connectivity Map: a new tool for biomedical research," Nature Reviews Cancer, vol. 7, pp. 54-60, 2007.
[96] A. J. Butte and I. S. Kohane, "Creation and implications of a phenome-genome network," Nature Biotechnology, vol. 24, pp. 55-62, 2006.
[97] J. Li, X. Zhu and J. Y. Chen, "Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts," PLoS Computational Biology, vol. 5, pp. e1000450, 2009.
[98] N. R. Smalheiser and D. R. Swanson, "Using ARROWSMITH: a computer-assisted approach to formulating and assessing scientific hypotheses," Computer Methods and Programs in Biomedicine, vol. 57, pp. 149-153, 1998.
[99] R. Homayouni, K. Heinrich, L. Wei and M. W. Berry, "Gene clustering by Latent Semantic Indexing of MEDLINE abstracts," Bioinformatics, vol. 21, pp. 104-115, 2005.
[100] R. Frijters, B. Heupers, P. van Beek, M. Bouwhuis, R. van Schaik, J. de Vlieg, J. Polman and W. Alkema, "CoPub: a literature-based keyword enrichment tool for microarray data analysis," Nucleic Acids Research, vol. 36, pp. W406-W410, 2008.
[101] R. Frijters, M. van Vugt, R. Smeets, R. van Schaik, J. de Vlieg and W. Alkema, "Literature mining for the discovery of hidden connections between drugs, genes and diseases," PLoS Computational Biology, vol. 6, pp. e1000943, 2010.
[102] A. Ijaz, M. Song and D. Lee, "MKEM: a Multi-level Knowledge Emergence Model for mining undiscovered public knowledge," BMC Bioinformatics, vol. 11, pp. S3, 2010.
[103] Anonymous "National center for biotechnology information (NCBI) PubMed," available at: http://www.ncbi.nlm.nih.gov/pubmed .
[104] S. Tomiuk and K. Hofmann, "Microarray probe selection strategies," Briefings in Bioinformatics, vol. 2, pp. 329-340, 2001.
[105] I. Affymetrix, "Affymetrix," available at: http://www.affymetrix.com/estore/.
[106] J. S. Wu, K. Y. Wu, C. N. Lee and C. W. Chiang, "DOFA: A novel disease oriented gene selection algorithm," CIIS Lab Technique Report 2010, 2010.
accessed at http://edith.cse.nsysu.edu.tw/wu/DOFA.pdf .
[107] H. Cao, H. Huang, W. Xu, D. Chen, J. Yu, J. Li and L. Li, "Fecal metabolome profiling of liver cirrhosis and hepatocellular carcinoma patients by ultra performance liquid chromatography–mass spectrometry," Analytica Chimica Acta, vol. 691, pp. 68-75, 2011.
[108] K. Sundarapandiyan, T. Keler, D. Behnke, A. Engert, S. Barth, B. Matthey, Y. M. Deo and R. F. Graziano, "Bispecific antibody-mediated destruction of Hodgkin’s lymphoma cells," Journal of Immunological Methods, vol. 248, pp. 113-123, 2001.
[109] Y. Kakinoki, H. Kubota and Y. Yamamoto, "CD64 Surface Expression on Neutrophils and Monocytes Is Significantly Up-Regulated after Stimulation with Granulocyte Colony-Stimulating Factor during CHOP Chemotherapy for Patients with Non-Hodgkina??™s Lymphoma," International Journal of Hematology, vol. 79, pp. 55-62, 2004.
[110] K. Stegmaier, S. M. Corsello, K. N. Ross, J. S. Wong, D. J. DeAngelo and T. R. Golub, "Gefitinib induces myeloid differentiation of acute myeloid leukemia," Blood, vol. 106, pp. 2841-2848, 2005.
[111] M. Bodo, T. Baroni, C. Bellucci, C. Lilli, M. De Ioanni, E. Bonifacio, L. Moretti, E. Becchetti, S. Bellocchio, C. Delfini, E. Lumare and A. Tabilio, "Unique human CD133+ leukemia cell line and its modulation towards a mesenchymal phenotype by FGF2 and TGFβ1," Journal of Cellular Physiology, vol. 206, pp. 682-692, 2006.
[112] E. Noh, H. Kim, M. J. Park, J. H. Baek, J. Park, S. J. Cha, J. Won and Y. J. Min, "Gefitinib enhances arsenic trioxide (AS2O3)-induced differentiation of acute promyelocytic leukemia cell line," Leukemia Research, vol. 34, pp. 1501-1505, 2010.
[113] M. Hewett, D. E. Oliver, D. L. Rubin, K. L. Easton, J. M. Stuart, R. B. Altman and T. E. Klein, "PharmGKB: the pharmacogenetics knowledge base," Nucleic Acids Research, vol. 30, pp. 163-165, 2002.
[114] J. F. de Vasconcellos, A. B. A. Laranjeira, N. I. T. Zanchin, R. Otubo, T. H. Vaz, A. A. Cardoso, S. R. Brandalise and J. A. Yunes, "Increased CCL2 and IL-8 in the bone marrow microenvironment in acute lymphoblastic leukemia," Pediatric Blood & Cancer, vol. 56, pp. 568-577, 2011.
[115] K. J. Hatfield, A. M. Olsnes, B. T. Gjertsen and O. Bruserud, "Antiangiogenic therapy in acute myelogenous leukemia: targeting of vascular endothelial growth factor and interleukin 8 as possible antileukemic strategies," Current Cancer Drug Targets, vol. 5, pp. 229-248, 2005.
[116] H. E. Broxmeyer, L. M. Pelus, C. H. Kim, G. Hangoc, S. Cooper and R. Hromas, "Synergistic inhibition in vivo of bone marrow myeloid progenitors by myelosuppressive chemokines and chemokine-accelerated recovery of progenitors after treatment of mice with Ara-C," Experimental Hematology, vol. 34, pp. 1069-1077, 2006.
[117] X. Chen, J. Higgins, S. Cheung, R. Li, V. Mason, K. Montgomery, S. Fan, M. v. d. Rijn and S. So, "Novel endothelial cell markers in hepatocellular carcinoma," Modern Pathology, vol. 17, pp. 1198-1210, 2004.
[118] T. Ezaki, T. Ikegami, T. Maeda, T. Yamada, T. Ishida, M. Hashizume and Y. Maehara, "Prognostic value of thymidine phosphorylase activity in liver tissue adjacent to hepatocellular carcinoma," International Journal of Clinical Oncology, vol. 10, pp. 171-176, 2005.
[119] J. Ko, M. Tsai, Y. Kuo, Y. Chiu, S. Weng, Y. Su and Y. Lin, "Modulation of Rad51, ERCC1, and thymidine phosphorylase by emodin result in synergistic cytotoxic effect in combination with capecitabine," Biochemical Pharmacology, vol. 81, pp. 680-690, 2011.
[120] Y. Ning, P. C. Manegold, Y. K. Hong, W. Zhang, A. Pohl, G. Lurje, T. Winder, D. Yang, M. J. LaBonte, P. M. Wilson, R. D. Ladner and H. Lenz, "Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models," International Journal of Cancer, vol. 128, pp. 2038-2049, 2011.
[121] J. Medina, V. Picarles, B. Greiner, C. Elsaesser, M. Kolopp, A. Mahl, D. Roman, B. Vogel, P. Nussbaumer, A. Winiski, J. Meingassner and A. d. B. d. Fraissinette, "LAV694, a new antiproliferative agent showing improved skin tolerability vs. clinical standards for the treatment of actinic keratosis," Biochemical Pharmacology, vol. 66, pp. 1885-1895, 2003.
[122] M. A. Mendonca, F. Cunha, E. Murta and B. Tavares-Murta, "Failure of neutrophil chemotactic function in breast cancer patients treated with chemotherapy," Cancer Chemotherapy and Pharmacology, vol. 57, pp. 663-670, 2006.
[123] M. M. M. Abdel-Latif, J. M. O'Riordan, N. Ravi, D. Kelleher and J. V. Reynolds, "Activated nuclear factor-kappa B and cytokine profiles in the esophagus parallel tumor regression following neoadjuvant chemoradiotherapy," Diseases of the Esophagus, vol. 18, pp. 246-252, 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code