Responsive image
博碩士論文 etd-0905111-182155 詳細資訊
Title page for etd-0905111-182155
論文名稱
Title
結合流固耦合之有效Slice-based海洋模擬機制
Efficient slice-based ocean simulation with fluid-solid coupling mechanics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
47
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-12
繳交日期
Date of Submission
2011-09-05
關鍵字
Keywords
海洋模擬、納維-斯托克斯方程式、流固耦合、切片法、流體體積法
Ocean simulation, Navie-Stokes equations, volume of fluid, fluid-solid coupling, slice method
統計
Statistics
本論文已被瀏覽 5685 次,被下載 912
The thesis/dissertation has been browsed 5685 times, has been downloaded 912 times.
中文摘要
當海洋模擬應用在各種遊戲以及電影上時,是使用函數去調整海平面高低,而各種物體與海洋之間的互動則是根據物體去設定特有的反應,並不是符合物理定律所做出來的模擬。所以在本論文中,根據物理定律,進行海洋模擬。但因建構三維場景模擬,通常因為整個場景計算量非常大,造成需要花費大量的時間在運算上,因此常無法有效的應用於各種效能的系統上,有鑑於此,為了能夠快速模擬海洋與物體間之互動,我們提出了一個基於切片的方法,並結合流固耦合來呈現海洋與物體互動之模擬。首先,根據關鍵切片挑選進行模擬的初始片數以降低運算量以及能夠表達出固體外觀,在二維切片中透過三維向量Navier-Stokes方程式,並結合三維流固耦合計算出海洋流固體間之交互作用以呈現符合物理定律的交互作用。接著利用VOF(Volume of fluid)重構出二維的海洋液面,並對液面進行內插以擴展為三維,此外並利用Doo-Sabin細分曲面(subdivision surface)來使得液面較平滑。分為兩個觀點來看,從海洋模擬的角度來說,能夠有效率的處理物體漂浮於海面上之流固耦合問題,且效率與傳統的海洋模擬不會相差太多;從流固耦合的角度來看,其方法大大降低了運算量,使其可以應用於嵌入式系統以及在電動或是電影上可以有效的運用。
Abstract
We present a slice-based method that combined with fluid-solid interaction to render the oceans interact with the objects of the simulation. First, according to the key slices selection one can determine the initial slices simulation for reducing the computation on the number of grid and expressing the solid appearance. Second, we used 3D vector Navier-Stokes equations and combined with 3D fluid-solid coupling to comply with the laws of physics for 2D slice simulation. Third, using a volume of fluid method one can reconstruct the 2D ocean surface and further apply interpolation to extended 2D surfaces to 3D ocean surface. Finally, using the Doo-Sabin subdivision surfaces method is to be smoother for the 3D surface. From the viewpoint of ocean simulation, we can not only solve the fluid-solid coupling problem of objects floating on the sea but also achieve better result in efficiency compared with traditional ocean simulation. From the viewpoint of fluid-solid coupling, the proposed method can greatly reduce the computation in number of grid and be applied to embedded systems, games or films effectively.
目次 Table of Contents
CHAPTER 1 導論 1
CHAPTER 2 文獻探討 3
2.1 流固體模擬(海洋) 3
2.1.1 流體框架 3
2.1.2 物理定律 3
2.1.3 自由液面 4
2.1.4 固體模擬 6
2.2 流固耦合 7
CHAPTER 3 研究方法 10
3.1 流體模擬 11
3.1.1 網格產生 12
3.1.2 流體方程 12
3.1.3 自由液面 14
3.1.4 擴展三維 18
3.1.5 表面平滑化 19
3.2 固體模擬 20
3.2.1 邊界條件 21
3.2.2 力與力矩 21
3.3 交互作用 22
3.3.1 關鍵切片選擇 22
3.3.2 流固耦合 23
CHAPTER 4 實驗與結果 25
4.1 場景建構 25
4.2 2D模擬 26
4.2.1 定義初始參數 26
4.2.2 納維-斯托克斯方程式 27
4.2.3 液面速度設定 28
4.2.4 流固耦合 28
4.3 結果 29
CHAPTER 5 結論 34
參考文獻 35
參考文獻 References
[1] A. Robinson-Mosher, E. English, and R. Fedkiw, “Accurate Tangential Velocities for Solid Fluid Coupling,” Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ‘09), pp. 227-236, 2009.
[2] A. Robinson-Mosher, T. Shinar, J. Gretarsson, J. Su, and R. Fedkiw, “Two-Way Coupling of Fluids to Rigid and Deformable Solids and Shells,” ACM Trans. Graphics, vol. 27, no. 3, pp. 46:1-46:9, 2008.
[3] C. Yuksel, D. H. House, and J. Keyser, “Wave Particles, ” ACM Trans. Graphics, vol. 26, no. 3, pp. 1-8, 2007.
[4] D. Enright, S. Marschner, and R. Fedkiw, “Animation and Rendering of Complex Water Surfaces,” ACM Trans. Graphics, vol. 21, no. 3, pp. 736–744, 2002.
[5] E. Guendelman, A. Selle, F. Losasso and R. Fedkiw, “Coupling Water and Smoke to Thin Deformable and Rigid Shells,” ACM Trans. Graphics, vol. 24, no. 3, pp. 973-981, 2005.
[6] G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw, “Efficient Simulation of Large Bodies of Water by Coupling Two and Three Dimensional Techniques,” ACM Trans. Graphics, vol. 25, no. 3, 2006.
[7] “GPU深度發掘”, http://www.physdev.com/gpu/.
[8] J.-L. Mitchell, “Real-time Synthesis and Rendering of Ocean Water,” ATI Research Technical Report, April, 2005.
[9] J. Tessendorf, “Simulating Ocean Water,” Proc. ACM SIG-GRAPH 2002 Course Notes 9 (Simulating Nature: Realistic and Interactive Techniques), 2002.
[10] C. N. Lee, J. M. Wu, Y. Z. Huang, D. J. Zhang-Jian, “An Efficient Slice-Based Water Simulation Approach for Breaking Waves,” Proc. Graphicon, 2010.
[11] M. Carlson, P. J. Mucha, and G. Turk, “Rigid Fluid: Animating the Interplay between Rigid Bodies and Fluid,” ACM Transactions on Graphics vol.23, no. 3, pp. 377–384. 2004.
[12] M. H. Chuang, “Developing a Two-way Coupled of Moving Solid Method for Solving Landslide Generated Tsunamis,” National Central University, Graduate Institute of Hydrological & Oceanic Sciences, Master thesis, 2009.
[13] M. Muller, D. Charypar, and M. Gross, “Particle-Based Fluid Simulation for Interactive Applications,” Proc. ACM SIG-GRAPH/Eurographics Symp. Computer Animation (SCA '03), pp. 154-159, 2003.
[14] N. Foster and D. Metaxas, “Realistic Animation of Liquids,” Graphical Models and Image Processing, vol. 58, no. 5, pp. 471-483, 1996.
[15] N. Foster and R. Fedkiw, “Practical Animation of Liquids,” Proc. ACM SIGGRPAH, pp. 23–30, 2001.
[16] O. Genevaux, A. Habibi, J. M. Dischler, “Simulating Fluid-Solid Interaction,” Proc. Graphics Interface, pp. 31–38, 2003.
[17] R. Fedkiw and X.-D. Liu, “The Ghost Fluid Method for Viscous Flows,” Innovative Methods for Numerical Solutions of Partial Differential Equations, edited by M. Hafez and J.-J. Chattot, pp. 111-143, World Scientific Publishing, New Jersey, 2002.
[18] R. Wang, P. Chen, and C. Ban, “Keeping Volume Fraction of Fluid in Reconstructing Moving-interfaces of VOF on Rectangular Meshes,” Chinese Journal of Computational Physics, vol. 25, no. 4, 2008.
[19] T. Takahashi, H. Fujii, A. Kunimatsu, K. Hiwada, T. Saito, K. Tanaka, and H. Ueki, ”Realistic Animation of Fluid with Splash and Foam,” Computer Graphics Forum, vol. 22, no. 3, pp. 391-400, 2003.
[20] T. Takahashi, U. Heihachi, and A. Kunimatsu, “The Simulation of Fluid-rigid Body Interaction,” Proc. ACM SIGGRAPH Sketches & Applications, 2002.
[21] V. Mihalef, D. Metaxas, and M. Sussman, “Animation and Control of Breaking Waves,” Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 315–324, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code