Responsive image
博碩士論文 etd-0905111-184844 詳細資訊
Title page for etd-0905111-184844
論文名稱
Title
蘭嶼海域皮珊瑚Briareum excavatum二次代謝物之研究
Studies on Secondary Metabolites from Skin coral Briareum excavatum
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
220
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-18
繳交日期
Date of Submission
2011-09-05
關鍵字
Keywords
軟珊瑚、二次代謝物、briarane類的雙萜化合物、抗人類巨細胞病毒、抗發炎
anti-inflammatory, briarane-type diterpenoid, Briareum excavatum, secondary metabolites, anti-HCMV
統計
Statistics
本論文已被瀏覽 5642 次,被下載 0
The thesis/dissertation has been browsed 5642 times, has been downloaded 0 times.
中文摘要
軟珊瑚Briareum excavatum被認為是海洋天然物中新穎結構的豐富來源,briarane類天然物之所以使天然物學者持續研究的主因是此類化合物的複雜度高及一些生物活性的表現。過去天然物學者報導臺灣產軟珊瑚 Briareum excavatum 二次代謝物的研究,其採集地點皆為在墾丁海域。本研究之B. excavatum則採自蘭嶼海域,針對其有機萃取層的化學成分做進一步的分析並從中分離得到十一個 briarane類的雙萜化合物1−11,其中化合物3、4和6−10為新化合物,化合物1、2、5和11為已知化合物。所有化合物的化學結構均由各種圖譜(1H和 13C NMR、COSY、HSQC、HMBC、NOESY、紅外線光譜及質譜等) 及物理性質的數據分析而確立並經由文獻及圖譜資料的比對作為確認。此外並針對這些化合物進行抗人類巨細胞病毒(HCMV)的抑制活性以及抗發炎活性測試,我們發現化合物8對抗人類巨細胞病毒較具有顯著的活性以及化合物11對抗發炎有較顯著的活性。
Abstract
Soft corals of the genus Briareum (Briareidae) have been well known as a rich source for marine natural products with novel structural features. Briarane-related natural products attracted the attentions of researchers because of the structural complexity and interesting biological activity associated with numerous compounds of this type. Previous studies on the secondary metabolites of wild-type and cultured Formosan octocoral Briareum excavatum were collected around the sea area of Kenting. In the thesis of our studies on secondary metabolites from marine organisms, the acetone-soluble of the Formosan octocoral B. excavatum collected at Orchid Island has led to the isolation of eleven briarane-type diterpenoids (1−11), compounds 3, 4, and 6−10 are new compounds. The structures of these compounds were determined on the basis of their spectroscopic analysis (1H NMR, 13C NMR, 1H−1H COSY, HSQC, HMBC, NOESY, IR and mass spectra) and physical data by comparison of the physical and spectral data with those of the related literatures. The antiviral activity against HCMV (human cytomegalovirus) cells of these secondary metabolites was evaluated. Metabolite 8 exhibited significant activity against HCMV cells and compound 11 showed anti-inflammatory activity.−
目次 Table of Contents
目錄
謝辭 iii

中文摘要 iv

英文摘要 v

目錄 vii

表目錄 ix

圖目錄 xi

縮寫對照表 xvii

第一章、緒論 1
第二章、Briareum excavatum二次代謝物的文獻回顧 3
第三章、材料與研究方法 27
3.1. 實驗設備儀器 27
3.2. 實驗材料 28
3.3. Briareum excavatum 的採集與分類地位 29
3.4. 萃取與分離流程 29
3.5. 抗發炎活性檢測方法 33
3.6. 抗病毒的測試方法 33
第四章、化學成分之結構證明 35
4.1 Briaexcavatolide U (1) 之結構鑑定 35
4.2 Briaexcavatin L (2) 之結構鑑定 40
4.3 LY05-13-8-1D (3) 之結構解析 45
4.4 LY05-14-1I (4) 之結構解析 62
4.5 Excavatoid L (5) 之結構鑑定 81
4.6 LY05-12-6B (6) 之結構解析 86
4.7 LY05-13-9-2D (7) 之結構解析 104
4.8 LY05-13-6-3F (8) 之結構解析 125
4.9 LY05-12-5-2FB (9) 之結構解析 142
4.10 LY05-12-5-2E (10) 之結構解析 162
4.11 Excavatolide B (11) 之結構鑑定 183
第五章、活性測試結果 193
第六章、結論 196
第七章、文獻回顧 199

表目錄
Table 2.1. 化合物13−19的結構和毒殺活性 4
Table 2.2. 化合物20, 11 和 21−23的結構和毒殺活性 5
Table 2.3. 化合物24−31 的結構和毒殺活性 6
Table 2.4. 化合物32−38 的結構和毒殺活性 7
Table 2.5. 化合物 39−44 的結構和毒殺活性 9
Table 2.6. 化合物 45−54的結構和毒殺活性 10
Table 2.7. 化合物 55−58 的結構和毒殺活性 11
Table 2.8. 化合物59−62的結構和毒殺活性 12
Table 2.9. 化合物63−65 的結構和毒殺活性 13
Table 2.10. 化合物66, 67, 1, 68 和 69的結構和毒殺活性 14
Table 2.11. 化合物70−72 的結構和毒殺活性 14
Table 2.12. 化合物73和74的結構 15
Table 2.13. 化合物75−78的結構和毒殺活性 16
Table 2.14. 化合物 79和80 的結構和生物活性 17
Table 2.15. 化合物81−83 和 2的結構和毒殺活性 18
Table 2.16. 化合物84−87的結構 19
Table 2.17. 化合物 88−91的結構和毒殺活性 20
Table 2.18. 化合物93−97 的結構和生物活性 21
Table 2.19. 化合物 98−101 的結構和生物活性 23
Table 2.20. 化合物102和103 的結構和生物活性 24
Table 2.21. 化合物 104−108的結構和生物活性 24
Table 2.22. 化合物 5, 109 和 110的結構和生物活性 26
Table 4.1.1 Spectroscopic and Physical Data of 1 36
Table 4.2.1 Spectroscopic and Physical Data of 2 41
Table 4.3.1 Spectroscopic and Physical Data of 3 48
Table 4.3.2 Comparison of 13C Chemical Shift of C-3 to C-8 and C-16 for Metabolites 1−4 49
Table 4.4.1 Spectroscopic and Physical Data of 4 65
Table 4.4.2 Comparison of 13C Chemical Shift of C-3 to C-8 and C-16 for Metabolites 1−4 67
Table 4.5.1 Spectroscopic and Physical Data of 5 82
Table 4.6.1 Spectroscopic and Physical Data of 6 88
Table 4.6.2 Comparison of 13C Chemical Shifts of C-2 to C-6 and C-16 for Metabolites 5,6, briaexcavatolide PandQ 90
Table 4.7.1 Spectroscopic and Physical Data of 7 107
Table 4.7.2 13C NMR Cheimcal Shifts for Natural Briaranes Possessing an 11,12-epoxy Group in β Form 109
Table 4.7.3 13C NMR Cheimcal Shifts for Natural Briaranes Possessing an 11,12-epoxy Group in α Form 111
Table 4.8.1 Spectroscopic and Physical Data of 8 128
Table 4.9.1 Spectroscopic and Physical Data of 9 145
Table 4.9.2 Comparison of 13C Chemical Shifts of C-11, C-12 and C-20 for Metabolites 9and10 147
Table 4.10.1 Spectroscopic and Physical Data of 10 165
Table 4.10.2 Comparison of 13C Chemical Shifts of C-11 and C-20 for Metabolites 9and10 167
Table 4.11.1 Spectroscopic and Physical Data of 11 185
Table 5.1 Anti-HCMV Activity of Metabolites 3, 4 and 6−10 193
Table 5.2. Anti-inflammatory Activity of Compound 11 194

圖目錄
Figure 3.4.1 Extraction and Isolation 32
Figure 4.1.1 LCMS/MS spectrum of 1 37
Figure 4.1.2 IR spectrum of 1 37
Figure 4.1.3 1H NMR spectrum of 1 38
Figure 4.1.4 13C NMR and DEPT spectra of 1 39
Figure 4.2.1 LCMS/MS spectrum of 2 42
Figure 4.2.2 IR spectrum of 2 42
Figure 4.2.3 1H NMR spectrum of 2 43
Figure 4.2.4 13C NMR and DEPT spectra of 2 44
Figure 4.3.1 ESIMS spectrum of 3 50
Figure 4.3.2 HRESIMS spectrum of 3 50
Figure 4.3.3 1H NMR spectrum of 3 51
Figure 4.3.4 Expansion of downfield 1H NMR spectrum of 3 52
Figure 4.3.5 Expansion of upfield 1H NMR spectrum of 3 53
Figure 4.3.6 13C NMR and DEPT spectra of 3 54
Figure 4.3.7 HSQC spectrum of 3 55
Figure 4.3.8 Partial expansion of upfield HSQC spectrum of 3 56
Figure 4.3.9 COSY spectrum of 3 57
Figure 4.3.10 HMBC spectrum of 3 58
Figure 4.3.11 Partial expansion of upfield HMBC spectrum of 3 59
Figure 4.3.12 NOESY spectrum of 3 60
Figure 4.3.13 IR spectrum of 3 61
Figure 4.4.1 ESIMS spectrum of 4 66
Figure 4.4.2 HRESIMS spectrum of 4 67
Figure 4.4.3 Comparison of chem 3D NOE for metabolites 1−4 68
Figure 4.4.4 1H NMR spectrum of 4 69
Figure 4.4.5 Expansion of downfield 1H NMR spectrum of 4 70
Figure 4 4.6 Expansion of upfield 1H NMR spectrum of 4 71
Figure 4.4.7 13C NMR and DEPT spectra of 4 72
Figure 4.4.8 HSQC spectrum of 4 73
Figure 4.4.9 Expansion of downfield HSQC spectrum of 4 74
Figure 4.4.10 COSY spectrum of 4 75
Figure 4.4.11 HMBC spectrum of 4 76
Figure 4.4.12 Partial expansion of upfield HMBC spectrum of 4. 77
Figure 4.4.13 Partial expansion of downfield HMBC spectrum of 4 78
Figure 4.4.14 NOESY spectrum of 4 79
Figure 4.4.15 IR spectrum of 4 80
Figure 4.5.1 LCMS/MS spectrum of 5 83
Figure 4.5.2 IR spectrum of 5 83
Figure 4.5.3 1H NMR spectrum of 5 84
Figure 4.5.4 13C NMR and DEPT spectra of 5 85
Figure 4.6.1 ESIMS spectrum of 6 89
Figure 4.6.2 HRESIMS spectrum of 6 89
Figure 4.6.3 Comparison of chem 3D NOE for metabolites 5,6, briaexcavatolide Pand Q 91
Figure 4.6.4 1H NMR spectrum of 6 92
Figure 4.6.5 Expansion of downfield 1H NMR spectrum of 6 93
Figure 4.6.6 Expansion of upfield 1H NMR spectrum of 6 94
Figure 4.6.7 13C NMR and DEPT spectra of 6 95
Figure 4.6.8 HSQC spectrum of 6 96
Figure 4.6.9 Expansion of upfield HSQC spectrum of 6 97
Figure 4.6.10 COSY spectrum of 6 98
Figure 4.6.11 HMBC spectrum of 6 99
Figure 4.6.12 Partial expansion of upfield HMBC spectrum of 6 100
Figure 4.6.13 NOESY spectrum of 6 101
Figure 4.6.14 Partial expansion of upfield NOESY spectrum of 6 102
Figure 4.6.15 IR spectrum of 6 103
Figure 4.7.1 ESIMS spectrum of 7 108
Figure 4.7.2 HRESIMS spectrum of 7 108
Figure 4.7.3 1H NMR spectrum of 7 112
Figure 4.7.4 Expansion of downfield 1H NMR spectrum of 7 113
Figure 4.7.5 Expansion of upfield 1H NMR spectrum of 7 114
Figure 4.7.6 13C NMR and DEPT spectra of 7 115
Figure 4.7.7 HSQC spectrum of 7 116
Figure 4.7.8 Expansion of upfield HSQC spectrum of 7 117
Figure 4.7.9 COSY spectrum of 7 118
Figure 4.7.10 Expansion of downfield COSY spectrum of 7 119
Figure 4.7.11 HMBC spectrum of 7 120
Figure 4.7.12 Partial expansion of upfield HMBC spectrum of 7 121
Figure 4.7.13 Partial expansion of downfield HMBC spectrum of 7 122
Figure 4.7.14 NOESY spectrum of 7 123
Figure 4.7.15 IR spectrum of 7 124
Figure 4.8.1 ESIMS spectrum of 8 129
Figure 4.8.2 HRESIMS spectrum of 8 129
Figure 4.8.3 1H NMR spectrum of 8 130
Figure 4.8.4 Expansion of downfield 1H NMR spectrum of 8 131
Figure 4.8.5 Expansion of upfield 1H NMR spectrum of 8 132
Figure 4.8.6 13C NMR and DEPT spectra of 8 133
Figure 4.8.7 HSQC spectrum of 8 134
Figure 4.8.8 Expansion of upfield HSQC spectrum of 8 135
Figure 4.8.9 COSY spectrum of 8 136
Figure 4.8.10 HMBC spectrum of 8 137
Figure 4.8.11 Partial expansion of upfield HMBC spectrum of 8 138
Figure 4.8.12 Partial expansion of downfield HMBC spectrum of 8 139
Figure 4.8.13 NOESY spectrum of 8 140
Figure 4.8.14 IR spectrum of 8 141
Figure 4.9.1 ESIMS spectrum of 9 146
Figure 4.9.2 HRESIMS spectrum of 9 146
Figure 4.9.3 Comparison of chem 3D NOE for metabolites 9and10 147
Figure 4.9.4 1H NMR spectrum of 9 148
Figure 4.9.5 Expansion of downfield 1H NMR spectrum of 9 149
Figure 4.9.6 Expansion of upfield 1H NMR spectrum of 9 150
Figure 4.9.7 13C NMR and DEPT spectra of 9 151
Figure 4.9.8 HSQC spectrum of 9 152
Figure 4.9.9 Expansion of upfield HSQC spectrum of 9 153
Figure 4.9.10 Expansion of downfield HSQC spectrum of 9 154
Figure 4.9.11 COSY spectrum of 9 155
Figure 4.9.12 HMBC spectrum of 9 156
Figure 4.9.13 Partial expansion of upfield HMBC spectrum of 9 157
Figure 4.9.14 Partial expansion of downfield HMBC spectrum of 9 158
Figure 4.9.15 NOESY spectrum of 9 159
Figure 4.9.16 Partial expansion of upfield NOESY spectrum of 9 160
Figure 4.9.17 IR spectrum of 9 161
Figure 4.10.1 ESIMS spectrum of 10 166
Figure 4.10.2 HRESIMS spectrum of 10 166
Figure 4.10.3 Comparison of chem 3D NOE for metabolites 9and10 167
Figure 4.10.4 1H NMR spectrum of 10 168
Figure 4.10.5 Expansion of downfield 1H NMR spectrum of 10 169
Figure 4.10.6 Expansion of upfield 1H NMR spectrum of 10 170
Figure 4.10.7 13C NMR and DEPT spectra of 10 171
Figure 4.10.8 HSQC spectrum of 10 172
Figure 4.10.9 Expansion of upfield HSQC spectrum of 10 173
Figure 4.10.10 Expansion of downfield HSQC spectrum of 10 174
Figure 4.10.11 COSY spectrum of 10 175
Figure 4.10.12 Expansion of downfield COSY spectrum of 10 176
Figure 4.10.13 HMBC spectrum of 10 177
Figure 4.10.14 Partial expansion of upfield HMBC spectrum of 10 178
Figure 4.10.15 Partial expansion of downfield HMBC spectrum of 10 179
Figure 4.10.16 NOESY spectrum of 10 180
Figure 4.10.17 Partial expansion of upfield NOESY spectrum of 10 181
Figure 4.10.18 IR spectrum of 10 182
Figure 4.11.1 LCMS/MS spectrum of 11 186
Figure 4.11.2 IR spectrum of 11 186
Figure 4.11.3 1H NMR spectrum of 11 187
Figure 4.11.4 1H NMR spectrum of 11 measured at -70 ° C 188
Figure 4.11.5 1H NMR spectra of 11 measured at various temperatures (-70, -30, 0, 25 ° C, Me2CO-d6) 189
Figure 4.11.6 13C NMR and DEPT spectra of 11 190
Figure 4.11.7 13C NMR spectrum of 11 measured at -70 ° C 191
Figure 4.11.8 13C NMR spectra of 11 measured at various temperatures (-70, -30, 0, 25 ° C, Me2CO-d6) 192
Figure 5.1化合物11在1, 10, 25, 50 μM 抑制LPS誘發老鼠巨噬細胞(mouse macrophage cell line, RAW 264.7)產生iNOS (inducible nitric oxide synthase)之抗發炎活性篩檢結果 194
Figure 5.2化合物11在1, 10, 25, 50 μM 抑制LPS誘發老鼠巨噬細胞(mouse macrophage cell line, RAW 264.7)產生COX-2 (cyclooxygenase-Ⅱ)之抗發炎活性篩檢結果 195
μ
參考文獻 References
1. Burks, J. E.; Vanderhelm, D.; Chang, C. Y.; Ciereszko, L. S. “The Crystal and Molecular Structure of Briarein A, a Diterpenoid from Gorgonian Briareum asbestinum” Acta Crystallogr., Sect. B: Struct. Sci. 1977, 33, 704−709.
2. Schmitz, F. J.; Schulz, M. M.; Siripitayananon, J.; Hossain, M. B.; Vanderhelm, D. “New Diterpenes from the Gorgonian Solenopodium excavatum” J. Nat. Prod. 1993, 56, 1339−1349.
3. Sheu, J.-H.; Sung, P.-J.; Cheng, M.-C.; Liu, H.-Y.; Fang, L.-S.; Duh, C.-Y.; Chiang, M.-Y. “Novel Cytotoxic Diterpenes, Excavatolides A−E, Isolated from the Formosan Gorgonian Briareum excavatum” J. Nat. Prod. 1998, 61, 602−608.
4. Sung, P.-J.; Su, J.-H.; Wang, G.-H.; Lin, S.-F.; Duh, C.-Y.; Sheu, J.-H. “Excavatolides F−M, New Briarane Diterpenes from the Gorgonian Briareum excavatum” J. Nat. Prod. 1999, 62, 457−463.
5. Neve, J. E.; McCool, B. J.; Bowden, B. F. “Excavatolides N−T, New Briaran Diterpenes from the Western Australian Gorgonian Briareum excavatum” Aust. J. Chem. 1999, 52, 359−366.
6. Sheu, J.-H.; Sung, P.-J.; Su, J.-H.; Wang, G.-H.; Duh, C.-Y.; Shen, Y.-C.; Chiang, M.-Y.; Chen, I.-T. “Excavatolides U−Z, New Briarane Diterpenes from the Gorgonian Briareum excavatum” J. Nat. Prod. 1999, 62, 1415−1420.
7. Sheu, J.-H.; Sung, P.-J.; Su, J.-H.; Liu, H.-Y.; Duh, C.-Y.; Chiang, M.-Y. “Briaexcavatolides A−J, New Diterpenes from the Gorgonian Briareum excavatum” Tetrahedron 1999, 55, 14555−14564.
8. Sung, P.-J.; Su, J.-H.; Duh, C.-Y.; Chiang, M.-Y.; Sheu, J.-H. “Briaexcavatolides K−N, New Briarane Diterpenes from the Gorgonian Briareum excavatum” J. Nat. Prod. 2001, 64, 318−323.
9. Wu, S.-L.; Sung, P.-J.; Chiang, M.-Y.; Wu, J.-Y.; Sheu, J.-H. “New Polyoxygenated Briarane Diterpenoids, Briaexcavatolides O−R, from the Gorgonian Briareum excavatum” J. Nat. Prod. 2001, 64, 1415−1420.
10. Aoki, S.; Okano, M.; Matsui, K.; Itoh, T.; Satari, R.; Akiyama, S.; Kobayashi, M. “Brianthein A, a Novel Briarane-type Diterpene Reversing Multidrug Resistance in Human Carcinoma Cell Line, from the Gorgonian Briareum excavatum” Tetrahedron 2001, 57, 8951−8957.
11. Wu, S.-L.; Sung, P.-J.; Su, J.-H.; Sheu, J.-H. “Briaexcavatolides S−V, Four New Briaranes from a Formosan Gorgonian Briareum excavatum” J. Nat. Prod. 2003, 66, 1252−1256.
12. Wu, S.-L.; Sung, P.-J.; Su, J.-H.; Wang, G.-H.; Sheu, J.-H. “Briaexcavatolide W, a New Diterpenoid from Briareum excavatum” Heterocycles 2004, 63, 895−898.
13. Sung, P.-J.; Hu, W.-P.; Wu, S.-L.; Su, J.-H.; Fang, L.-S.; Wang, J.-J.; Sheu, J.-H. “Briaexcavatolides X−Z, Three New Briarane-related Derivatives from the Gorgonian Coral Briareum excavatum” Tetrahedron 2004, 60, 8975−8979.
14. Sung, P.-J.; Chao, C.-H.; Chen, Y.-P.; Su, J.-H.; Hu, W.-P.; Sheu, J.-H. “Briaexcavatins A and B, Novel Briaranes from the Octocoral Briareum excavatum” Tetrahedron Lett. 2006, 47, 167−170.
15. Sung, P.-J.; Chen, Y.-P.; Hwang, T.-L.; Hu, W.-P.; Fang, L.-S.; Wu, Y.-C.; Li, J.-J.; Sheu, J.-H. “Briaexcavatins C−F, Four New Briarane-related Diterpenoids from the Formosan Octocoral Briareum excavatum (Briareidae)” Tetrahedron 2006, 62, 5686−5691.
16. Chen, Y.-P.; Wu, S.-L.; Su, J.-H.; Lin, M.-R.; Hu, W.-P.; Hwang, T.-L.; Sheu, J.-H.; Fan, T.-Y.; Fang, L.-S.; Sung, P.-J. “Briaexcavatins G and H, Two New Briaranes from the Octocoral Briareum excavatum” Bull. Chem. Soc. Jpn. 2006, 79, 1900−1905.
17. Sung, P.-J.; Lin, M.-R.; Su, Y.-D.; Chiang, M.-Y.; Hu, W.-P.; Su, J.-H.; Cheng, M.-C.; Hwang, T.-L.; Sheu, J.-H. “New Briaranes from the Octocorals Briareum excavatum (Briareidae) and Junceella fragilis” Tetrahedron 2008, 64, 2596−2604.
18. Sung, P.-J.; Lin, M.-R.; Hwang, T.-L.; Fan, T.-Y.; Su, W.-C.; Ho, C.-C.; Fang, L.-S.; Wang, W.-H. “Briaexcavatins M−P, Four New Briarane-related Diterpenoids from Cultured Octocoral Briareum excavatum (Briareidae)” Chem. Pharm. Bull. 2008, 56, 930−935.
19. Hwang, T.-L.; Lin, M.-R.; Tsai, W.-T.; Yeh, H.-C.; Hu, W.-P.; Sheu, J.-H.; Sung, P.-J. “New Polyoxygenated Briaranes from Octocorals Briareum excavatum and Ellisella robusta” Bull. Chem. Soc. Jpn. 2008, 81, 1638−1646.
20. Sung, P.-J.; Lin, M.-R.; Chiang, M.-Y. “The Structure and Absolute Stereochemistry of Briaexcavatin U, a New Chlorinated Briarane from a Cultured Octocoral Briareum excavatum” Chem. Lett. 2009, 38, 154−155.
21. Sung, P.-J.; Lin, M.-R.; Chiang, M.-Y.; Hwang, T.-L. “Briaexcavatins V−Z, Discovery of New Briaranes from a Cultured Octocoral Briareum excavatum” Bull. Chem. Soc. Jpn. 2009, 82, 987−996.
22. Sung, P.-J.; Su, Y.-D.; Li, G.-Y.; Chiang, M.-Y.; Lin, M.-R.; Huang, I.-C.; Li, J.-J.; Fang, L.-S.; Wang, W.-H. “Excavatoids A–D, New Polyoxygenated Briaranes from the Octocoral Briareum excavatum” Tetrahedron 2009, 65, 6918−6924.
23. Sung, P.-J.; Chen, B.-Y.; Lin, M.-R.; Hwang, T.-L.; Wang, W.-H.; Sheu, J.-H.; Wu, Y.-C. “Excavatoids E and F: Discovery of Two New Briaranes from the Cultured Octocoral Briareum excavatum” Mar. Drugs 2009, 7, 472−482.
24. Sung, P.-J.; Chen, B.-Y.; Chiang, M.-Y.; Hou, C.-H.; Su, Y.-D.; Hwang, T.-L.; Chen, Y.-H.; Chen, J.-J. “Excavatoids G−K, New 8,17-Epoxybriaranes from the Cultured Octocoral Briareum excavatum (Briareidae)” Bull. Chem. Soc. Jpn. 2010, 83, 539−545.
25. Su, J.-H.; Chen, B.-Y.; Hwang, T.-L.; Chen, Y.-H.; Huang, I.-C.; Lin, M.-R.; Chen, J.-J.; Fang, L.-S.; Wang, W.-H.; Li, J.-J.; Sheu, J.-H.; Sung, P.-J. “Excavatoids L−N, New 12-Hydroxybriaranes from the Cultured Octocoral Briareum excavatum (Briareidae)” Chem. Pharm. Bull. 2010, 58, 662−665.
26. Sung, P.-J.; Li, G.-Y.; Su, Y.-D.; Lin, M.-R.; Chang, Y.-C.; Kung, T.-H.; Lin, C.-S.; Chen, Y.-H.; Su, J.-H.; Lu, M.-C.; Kuo, J.; Weng, C.-F.; Hwang, T.-L. “Excavatoids O and P, New 12-Hydroxybriaranes from the Octocoral Briareum excavatum” Mar. Drugs 2010, 8, 2639−2646.
27. Sung, P.-J.; Sheu, J.-H.; Xu, J.-P. “Survey of Briarane-type Diterpenoids of Marine Origin” Heterocycles 2002, 57, 535−579.
28. Sung, P.-J.; Chang, P.-C.; Fang, L.-S.; Sheu, J.-H.; Chen, W.-C.; Chen, Y.-P.; Lin, M.-R. “Survey of Briarane-related Diterpenoids−Part II” Heterocycles 2005, 65, 195−204.
29. Sung, P.-J.; Sheu, J.-H.; Wang, W.-H.; Fang, L.-S.; Chung, H.-M.; Pai, C.-H.; Su, Y.-D.; Tsai, W.-T.; Chen, B.-Y.; Lin, M.-R.; Li, G.-Y. “Survey of Briarane-type Diterpenoids−Part III” Heterocycles 2008, 75, 2627−2648.
30. Sung, P.-J.; Su, J.-H.; Wang, W.-H.; Sheu, J.-H.; Fang, L.-S.; Wu, Y.-C.; Chen, Y.-H.; Chung, H.-M.; Su, Y.-D.; Chang, Y.-C. “Survey of Briarane-type Diterpenoids−Part Ⅳ” Heterocycles 2011, 83, in press.
31. Ho, F. M.; Lai, C. C.; Huang, L. J.; Kuo, T. C.; Chao, C. M.; Lin, W. W. “The Anti-inflammatory Carbazole, LCY-2-CHO, Inhibits Lipopolysaccharide-induced Inflammatory Mediator Expression through Inhibition of the p38 Mitogen-activated Protein Kinase Signaling Pathway in Macrophages” Br. J. Pharmacol.2004, 141, 1037−1047.
32. Park, E. K.; Shin, Y. W.; Lee, H. U.; Kim, S. S.; Lee, Y. C.; Lee, B. Y.; Kim, D. H. “Inhibitory Effect of Ginsenoside Rb1 and Compound K on NO and Prostaglandin E2 Biosyntheses of RAW264.7 Cells Induced by Lipopolysaccharide” Biol. Pharm. Bull. 2005, 28, 652−656.
33. Lowry, O. H.; Rosebrough N. J.; Farr A.L.; Randall R. J., “Protein Measurement with the Folin-phenol Reagents” J. Biol. Chem. 1951, 193, 265−275.
34. Stevens, M.; Balzarini, J.; Tabarrini, O.; Andrei, G.; Snoeck, R.; Cecchetti, V.; Fravolini, A.; De Clercq, E.; Pannecouque, C. “Cell-dependent Interference of a series of New 6-aminoquinolone Derivatives with Viral (HIV/CMV) Transactivation” J. Antimicrob. Chemother. 2005, 56, 847−855.
35. Li, C.-M.; Chen, T.-Y.; Lin, Y.-Y.; Duh, C.-Y.; Wen, Z.-H. “The Anti-inflammatory effects of Brei, a marine compound from the soft coral Briareum excavatum on carrageenan-induced inflammatory rats” Columbus−Poster Presentation, 2011, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.16.51.3
論文開放下載的時間是 校外不公開

Your IP address is 3.16.51.3
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code